Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Invest Ophthalmol Vis Sci ; 65(6): 1, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829671

RESUMEN

Purpose: Loss of function of the lacrimal gland (LG), which produces the aqueous tear film, is implicated in age-related dry eye. To better understand this deterioration, we evaluated changes in lipid metabolism and inflammation in LGs from an aging model. Methods: LG sections from female C57BL/6J mice of different ages (young, 2-3 months; intermediate, 10-14 months; old,  ≥24 months) were stained with Oil Red-O or Toluidine blue to detect lipids. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis and western blotting of LG lysates determined differences in the expression of genes and proteins related to lipid metabolism. A photobleaching protocol to quench age-related autofluorescence was used in LG sections to evaluate changes in immunofluorescence associated with NPC1, NPC2, CTSL, and macrophages (F4/80, CD11b) with age using confocal fluorescence microscopy. Results: Old LGs showed increased lipids prominent in basal aggregates in acinar cells and in extra-acinar sites. LG gene expression of Npc1, Npc2, Lipa, and Mcoln2, encoding proteins involved in lipid metabolism, was increased with age. NPC1 was also significantly increased in old LGs by western blotting. In photobleached LG sections, confocal fluorescence microscopy imaging of NPC1, NPC2, and CTSL immunofluorescence showed age-associated enrichment in macrophages labeled to detect F4/80. Although mononuclear macrophages were detectable in LG at all ages, this novel multinucleate macrophage population containing NPC1, NPC2, and CTSL and enriched in F4/80 and some CD11b was increased with age at extra-acinar sites. Conclusions: Lipid-metabolizing proteins enriched in F4/80-positive multinucleated macrophages are increased in old LGs adjacent to sites of lipid deposition in acini.


Asunto(s)
Envejecimiento , Western Blotting , Aparato Lagrimal , Metabolismo de los Lípidos , Macrófagos , Ratones Endogámicos C57BL , Reacción en Cadena en Tiempo Real de la Polimerasa , Animales , Femenino , Envejecimiento/fisiología , Ratones , Metabolismo de los Lípidos/fisiología , Macrófagos/metabolismo , Aparato Lagrimal/metabolismo , Microscopía Confocal , Modelos Animales de Enfermedad , Síndromes de Ojo Seco/metabolismo , Síndromes de Ojo Seco/patología
2.
Ocul Surf ; 33: 64-73, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38705236

RESUMEN

PURPOSE: Polyunsaturated fatty acids (PUFA) are a source of bioactive lipids regulating inflammation and its resolution. METHODS: Changes in PUFA metabolism were compared between lacrimal glands (LGs) from young and aged C57BL/6 J mice using a targeted lipidomics assay, as was the gene expression of enzymes involved in the metabolism of these lipids. RESULTS: Global reduction in PUFAs and their metabolites was observed in aged LGs compared to young controls, averaging between 25 and 66 % across all analytes. ꞷ-6 arachidonic acid (AA) metabolites were all reduced in aged LGs, where the changes in prostaglandin E2 (PGE2) and lipoxin A4 (LXA4) were statistically significant. Several other 5-lipoxygenase (5-LOX) mediated metabolites were significantly reduced in the aged LGs, including D-series resolvins (e.g., RvD4, RvD5, and RvD6). Along with the RvDs, several ꞷ-3 docosahexaenoic acid (DHA) metabolites such as 14-HDHA, neuroprotectin D1 (NPD1), Maresin 2 (MaR2), and MaR 1 metabolite (22-COOH-MaR1) were significantly reduced in aged LGs. Similarly, ꞷ-3 eicosapentaenoic acid (EPA) and its metabolites were significantly reduced in aged LGs, where the most significantly reduced was 18-HEPE. Using metabolite ratios (product:precursor) for specific metabolic conversions as surrogate enzymatic measures, reduced 12-LOX activity was identified in aged LGs. CONCLUSION: In this study, global reduction of PUFAs and their metabolites was found in the LGs of aged female C57BL/6 J compared to young controls. A consistent reduction was observed across all detected lipid analytes except for ꞷ-3 docosapentaenoic acid (DPA) and its special pro-resolving mediator (SPM) metabolites in aged mice, suggesting an increased risk for LG inflammation.


Asunto(s)
Envejecimiento , Ácidos Grasos Insaturados , Aparato Lagrimal , Ratones Endogámicos C57BL , Animales , Ratones , Ácidos Grasos Insaturados/metabolismo , Envejecimiento/metabolismo , Aparato Lagrimal/metabolismo , Metabolismo de los Lípidos/fisiología , Femenino , Lipidómica/métodos
3.
Invest Ophthalmol Vis Sci ; 64(4): 1, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37010857

RESUMEN

Purpose: To analyze the changes in the lacrimal gland (LG) miRNAome from male nonobese diabetic (NOD) mice with autoimmune dacryoadenitis compared with LG from healthy male BALB/c and dacryoadenitis-free female NOD mice. Methods: LG from these mice were collected for small RNA sequencing to identify dysregulated miRNAs; hits were validated by RT-qPCR in male NOD and BALB/c LG. Dysregulation of validated species within immune cell-enriched cell fractions and epithelial-enriched cell fractions from LG was probed by RT-qPCR. Ingenuity pathway analysis identified putative miRNA targets, which were examined in publicly available mRNA-seq datasets. Western blotting and confocal imaging of immunofluorescence enabled validation of some molecular changes at the protein level. Results: Male NOD LG exhibited 15 and 13 significantly up- and downregulated miRNAs, respectively. Dysregulated expression of 14 of these miRNAs (9 upregulated, 5 downregulated) was validated in male NOD versus BALB/c LG by RT-qPCR. Seven of the upregulated miRNAs were increased owing to their abundance in immune cell-enriched cell fractions, whereas four downregulated miRNAs were largely expressed in epithelial-enriched cell fractions. Ingenuity pathway analysis predicted the upregulation of IL-6 and IL-6-like pathways as an outcome of miRNA dysregulation. Increased expression of several genes in these pathways was confirmed by mRNA-seq analysis, whereas immunoblotting and immunofluorescence confirmed Ingenuity pathway analysis-predicted changes for IL-6Rα and gp130/IL-6st. Conclusions: Male NOD mouse LG exhibit multiple dysregulated miRNAs owing to the presence of infiltrating immune cells, and decreased acinar cell content. The observed dysregulation may increase IL-6Rα and gp130/IL-6st on acini and IL-6Rα on specific lymphocytes, enhancing IL-6 and IL-6-like cytokine signaling.


Asunto(s)
Dacriocistitis , Aparato Lagrimal , MicroARNs , Síndrome de Sjögren , Masculino , Femenino , Ratones , Animales , Aparato Lagrimal/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Modelos Animales de Enfermedad , Receptor gp130 de Citocinas/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Síndrome de Sjögren/metabolismo , Dacriocistitis/genética , Dacriocistitis/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratones Endogámicos NOD
4.
Front Immunol ; 13: 833254, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35309364

RESUMEN

Objective: The tear miRNAome of the male NOD mouse, a model of ocular symptoms of Sjögren's syndrome (SS), was analyzed to identify unique miRNAs. Methods: Male NOD mice, aged 12-14 weeks, were used to identify tear miRNAs associated with development of autoimmune dacryoadenitis. Age- and sex-matched male BALB/c mice served as healthy controls while age-matched female NOD mice that do not develop the autoimmune dacryoadenitis characteristic of SS were used as additional controls. Total RNA was isolated from stimulated tears pooled from 5 mice per sample and tear miRNAs were sequenced and analyzed. Putative miRNA hits were validated in additional mouse cohorts as well as in tears of SS patients versus patients with another form of dry eye disease, meibomian gland disease (MGD) using qRT-PCR. The pathways influenced by the validated hits were identified using Ingenuity Pathway Analysis. Results: In comparison to tears from both healthy (male BALB/c) and additional control (female NOD) mice, initial analy1sis identified 7 upregulated and 7 downregulated miRNAs in male NOD mouse tears. Of these, 8 were validated by RT-qPCR in tears from additional mouse cohorts. miRNAs previously implicated in SS pathology included mmu-miR-146a/b-5p, which were significantly downregulated, as well as mmu-miR-150-5p and mmu-miR-181a-5p, which were upregulated in male NOD mouse tears. All other validated hits including the upregulated miR-181b-5p and mmu-miR-203-3p, as well as the downregulated mmu-miR-322-5p and mmu-miR-503-5p, represent novel putative indicators of autoimmune dacryoadenitis in SS. When compared to tears from patients with MGD, miRNAs hsa-miR-203a-3p, hsa-miR-181a-5p and hsa-miR-181b-5p were also significantly increased in tears of SS patients. Conclusions: A panel of differentially expressed miRNAs were identified in tears of male NOD mice, with some preliminary validation in SS patients, including some never previously linked to SS. These may have potential utility as indicators of ocular symptoms of SS; evaluation of the pathways influenced by these dysregulated miRNAs may also provide further insights into SS pathogenesis.


Asunto(s)
Dacriocistitis , MicroARNs , Síndrome de Sjögren , Animales , Biomarcadores/metabolismo , Dacriocistitis/genética , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos NOD , MicroARNs/genética , Síndrome de Sjögren/diagnóstico , Síndrome de Sjögren/genética , Síndrome de Sjögren/metabolismo
5.
Biomaterials ; 283: 121441, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35306230

RESUMEN

Sjögren's syndrome (SS) is a multifactorial autoimmune disease with principal symptoms including inflammation and loss of function of lacrimal glands (LG) and salivary glands. While glandular infiltrates includes both B- and T-cells, CD4+ T cells are strongly implicated. Utilizing the male non-obese diabetic (NOD) mouse model of SS, this work: 1) identifies clinically-relevant elevations in cytokines (IL-17A, IL-2) in LG-derived CD4+ T cells; and 2) explores tissue-specific immunosuppression of SS using a novel protein-based drug carrier to concentrate cyclosporine A (CsA) directly in the LG. As a potent immunosuppressant, topical ophthalmic CsA is approved for dry eye disorders; however, it cannot effectively resolve inflammation due to limited accumulation in the LG. Systemic CsA has dose-limiting side effects that also limit its ability to block LG inflammation. Using elastin-like polypeptides (ELPs) fused genetically to cyclophilin, the intracellular cognate receptor of CsA, this manuscript reports a sustained-release formulation of CsA that maintains therapeutic drug concentrations in the LG and extends intervals between doses. This formulation blocked both in vitro Th17 cell differentiation and IL-17A secretion. In vivo treatment significantly decreased the abundance of Th17.1 cells, a helper cell population sharing phenotypes of both Th17 and Th1, in the LG of diseased NOD mice. Treatment with even a single dose of the sustained-release formulation was effective enough to improve basal levels of tear production. Thus, this sustained-release formulation suppressed local LG inflammation driven through IL-17 dependent pathways, while improving ocular surface function.


Asunto(s)
Aparato Lagrimal , Síndrome de Sjögren , Animales , Autoinmunidad , Ciclosporina/metabolismo , Ciclosporina/farmacología , Ciclosporina/uso terapéutico , Modelos Animales de Enfermedad , Aparato Lagrimal/metabolismo , Masculino , Ratones , Ratones Endogámicos NOD , Síndrome de Sjögren/tratamiento farmacológico , Síndrome de Sjögren/metabolismo
6.
Exp Biol Med (Maywood) ; 247(6): 519-526, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34648358

RESUMEN

Current treatments for meibomian gland dysfunction have several limitations, creating a necessity for other advanced treatment options. The purpose of this study is to determine the effectiveness of focused ultrasound stimulation for the treatment of dry eye disease caused by meibomian gland dysfunction. An in vivo study of nine Dutch Belted rabbits was conducted with focused ultrasound stimulation of the meibomian glands. A customized line-focused ultrasonic transducer was designed for treatment. Fluorescein imaging, Schirmer's test, and Lipiview II ocular interferometer were used to quantify outcomes from three aspects: safety, tear production, and lipid layer thickness. Both tear secretion and lipid layer thickness improved following ultrasound treatment. Five to 10 min after the ultrasound treatment, the mean values of lipid layer thickness increased from 55.33 ± 11.15 nm to 95.67 ± 22.77 nm (p < 0.05), while the mean values measured with the Schirmer's test increased from 2.0 ± 2.3 to 7.2 ± 4.3 (p < 0.05). Positive effects lasted more than three weeks. Adverse events such as redness, swelling, and mild burn, occurred in two rabbits in preliminary experiments when the eyelids sustained a temperature higher than 42°C. No serious adverse events were found. The results suggest that ultrasound stimulation of meibomian glands can improve both tear production and lipid secretion. Ultimately, ultrasound stimulation has the potential to be an option for the treatment of evaporative dry eye disease caused by meibomian gland dysfunction.


Asunto(s)
Síndromes de Ojo Seco , Disfunción de la Glándula de Meibomio , Animales , Síndromes de Ojo Seco/terapia , Lípidos , Glándulas Tarsales , Conejos , Lágrimas/fisiología
7.
Biomacromolecules ; 23(1): 265-275, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-34914359

RESUMEN

Dynamin (DNM) is a family of large GTPases possessing a unique mechanical ability to "pinch" off vesicles entering cells. DNM2 is the most ubiquitously expressed member of the DNM family. We developed a novel tool based on elastin-like polypeptide (ELP) technology to quickly, precisely, and reversibly modulate the structure of DNM2. ELPs are temperature-sensitive biopolymers that self-assemble into microdomains above sharp transition temperatures. When linked together, DNM2 and a temperature-sensitive ELP fusion organize into a range of distinct temperature-dependent structures above a sharp transition temperature, which were not observed with wild-type DNM2 or a temperature-insensitive ELP fusion control. The structures comprised three different morphologies, which were prevalent at different temperature ranges. The size of these structures was influenced by an inhibitor of the DNM2 GTPase activity, dynasore; furthermore, they appear to entrap co-expressed cytosolic ELPs. Having demonstrated an unexpected diversity of morphologically distinct structures, DNM2-ELP fusions may have applications in the exploration of dynamin-dependent biology.


Asunto(s)
Elastina , Péptidos , Dinaminas , Elastina/química , Péptidos/química , Temperatura , Temperatura de Transición
8.
Exp Eye Res ; 214: 108895, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34910926

RESUMEN

Cathepsin S (Ctss) is a protease that is proinflammatory on epithelial cells. The purpose of this study was to investigate the role of Ctss in age-related dry eye disease. Ctss-/- mice [in a C57BL/6 (B6) background] of different ages were compared to B6 mice. Ctss activity in tears and lacrimal gland (LG) lysates was measured. The corneal barrier function was investigated in naïve mice or after topical administration of Ctss eye drops 5X/day for two days. Eyes were collected, and conjunctival goblet cell density was measured in PAS-stained sections. Immunoreactivity of the tight junction proteins, ZO-1 and occludin, was investigated in primary human cultured corneal epithelial cells (HCEC) without or with Ctss, with or without a Ctss inhibitor. A significant increase in Ctss activity was observed in the tears and LG lysates in aged B6 compared to young mice. This was accompanied by higher Ctss transcripts and protein expression in LG and spleen. Compared to B6, 12 and 24-month-old Ctss-/- mice did not display age-related corneal barrier disruption and goblet cell loss. Treatment of HCEC with Ctss for 48 h disrupted occludin and ZO-1 immunoreactivity compared to control cells. This was prevented by the Ctss inhibitor LY3000328 or Ctss-heat inactivation. Topical reconstitution of Ctss in Ctss-/- mice for two days disrupted corneal barrier function. Aging on the ocular surface is accompanied by increased expression and activity of the protease Ctss. Our results suggest that cathepsin S modulation might be a novel target for age-related dry eye disease.


Asunto(s)
Envejecimiento/fisiología , Catepsinas/metabolismo , Síndromes de Ojo Seco/metabolismo , Aparato Lagrimal/metabolismo , Lágrimas/metabolismo , Animales , Células Cultivadas , Conjuntiva/metabolismo , Sistemas de Liberación de Medicamentos , Síndromes de Ojo Seco/tratamiento farmacológico , Epitelio Corneal/metabolismo , Células Caliciformes/metabolismo , Ratones , Ratones Endogámicos C57BL , Ocludina/metabolismo , Bazo/metabolismo , Proteínas de Uniones Estrechas/metabolismo , Proteína de la Zonula Occludens-1/metabolismo
9.
Exp Eye Res ; 211: 108760, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34487726

RESUMEN

Little is known about the relationship between stimulation of lacrimal gland (LG) tear protein secretion by parasympathetic versus sympathetic nerves, particularly whether the spectrum of tear proteins evoked through each innervation pathway varies. We have previously shown that activity and abundance of cathepsin S (CTSS), a cysteine protease, is greatly increased in tears of Sjögren's syndrome (SS) patients and in tears from the male NOD mouse of autoimmune dacryoadenitis that recapitulates SS-associated dry eye disease. Beyond the increased synthesis of CTSS detected in the diseased NOD mouse LG, increased tear CTSS secretion in NOD mouse tears was recently linked to increased exocytosis from a novel endolysosomal secretory pathway. Here, we have compared secretion and trafficking of CTSS in healthy mouse LG acinar cells stimulated with either the parasympathetic acetylcholine receptor agonist, carbachol (CCh), or the sympathetic α1-adrenergic agonist, phenylephrine (PE). In situ secretion studies show that PE significantly increases CTSS activity and protein in tears relative to CCh stimulation by 1.2-fold (***, p = 0.0009) and ∼5-fold (*, p-0.0319), respectively. A similar significant increase in CTSS activity with PE relative to CCh is observed when cultured LGAC are stimulated in vitro. CCh stimulation significantly elevates intracellular [Ca2+], an effect associated with increases in the size of Rab3D-enriched vesicles consistent with compound fusion, and subsequently decreases in their intensity of labeling consistent with their exocytosis. PE stimulation induces a lower [Ca2+] response and has minimal effects on Rab3D-enriched SV diameter or the intensity of Rab3D-enriched SV labeling. LG deficient in Rab3D exhibit a higher sensitivity to PE stimulation, and secrete more CTSS activity. Significant increases in the colocalization of endolysosomal vesicle markers (Lamp1, Lamp2, Rab7) with the subapical actin suggestive of fusion of endolysosomal vesicles at the apical membrane occur both with CCh and PE stimulation, but PE demonstrates increased colocalization. In conclusion, the α1-adrenergic agonist, PE, increases CTSS secretion into tears through a pathway independent of the exocytosis of Rab3D-enriched mature SV, possibly representing an alternative endolysosomal secretory pathway.


Asunto(s)
Células Acinares/efectos de los fármacos , Agonistas de Receptores Adrenérgicos alfa 1/farmacología , Catepsinas/metabolismo , Aparato Lagrimal/efectos de los fármacos , Fenilefrina/farmacología , Vías Secretoras/efectos de los fármacos , Lágrimas/metabolismo , Células Acinares/metabolismo , Animales , Western Blotting , Calcio/metabolismo , Carbacol/farmacología , Células Cultivadas , Agonistas Colinérgicos/farmacología , Modelos Animales de Enfermedad , Femenino , Silenciador del Gen , Aparato Lagrimal/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , beta-N-Acetilhexosaminidasas/metabolismo , Proteínas de Unión al GTP rab3/genética
10.
Int J Mol Sci ; 22(4)2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33562815

RESUMEN

Altered lacrimal gland (LG) secretion is a feature of autoimmune dacryoadenitis in Sjögren's syndrome (SS). Cathepsin S (CTSS) is increased in tears of SS patients, which may contribute to disease. Rab3D and Rab27a/b isoforms are effectors of exocytosis in LG, but Rab27a is poorly studied. To investigate whether Rab27a mediates CTSS secretion, we utilized quantitative confocal fluorescence microscopy of LG from SS-model male NOD and control male BALB/c mice, showing that Rab27a-enriched vesicles containing CTSS were increased in NOD mouse LG. Live-cell imaging of cultured lacrimal gland acinar cells (LGAC) transduced with adenovirus encoding wild-type (WT) mCFP-Rab27a revealed carbachol-stimulated fusion and depletion of mCFP-Rab27a-enriched vesicles. LGAC transduced with dominant-negative (DN) mCFP-Rab27a exhibited significantly reduced carbachol-stimulated CTSS secretion by 0.5-fold and ß-hexosaminidase by 0.3-fold, relative to stimulated LGAC transduced with WT mCFP-Rab27a. Colocalization of Rab27a and endolysosomal markers (Rab7, Lamp2) with the apical membrane was increased in both stimulated BALB/c and NOD mouse LG, but the extent of colocalization was much greater in NOD mouse LG. Following stimulation, Rab27a colocalization with endolysosomal membranes was decreased. In conclusion, Rab27a participates in CTSS secretion in LGAC though the major regulated pathway, and through a novel endolysosomal pathway that is increased in SS.


Asunto(s)
Catepsinas/metabolismo , Aparato Lagrimal/citología , Síndrome de Sjögren/metabolismo , Proteínas rab27 de Unión a GTP/metabolismo , Células Acinares/citología , Células Acinares/metabolismo , Células Acinares/patología , Animales , Carbacol/farmacología , Células Cultivadas , Modelos Animales de Enfermedad , Endosomas/metabolismo , Aparato Lagrimal/metabolismo , Aparato Lagrimal/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos NOD , Proteínas rab27 de Unión a GTP/genética
11.
Biomacromolecules ; 22(3): 1102-1114, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33356170

RESUMEN

Sjögren's syndrome (SS) is an autoimmune disease associated with severe exocrinopathy, which is characterized by profound lymphocytic infiltration (dacryoadenitis) and loss of function of the tear-producing lacrimal glands (LGs). Systemic administration of Rapamycin (Rapa) significantly reduces LG inflammation in the male Nonobese Diabetic (NOD) model of SS-associated autoimmune dacryoadenitis. However, the systemic toxicity of this potent immunosuppressant limits its application. As an alternative, this paper reports an intra-LG delivery method using a depot formulation comprised of a thermoresponsive elastin-like polypeptide (ELP) and FKBP, the cognate receptor for Rapa (5FV). Depot formation was confirmed in excised whole LG using cleared tissue and observation by both laser-scanning confocal and lightsheet microscopy. The LG depot was evaluated for safety, efficacy, and intra-LG pharmacokinetics in the NOD mouse disease model. Intra-LG injection with the depot formulation (5FV) retained Rapa in the LG for a mean residence time (MRT) of 75.6 h compared to Rapa delivery complexed with a soluble carrier control (5FA), which had a MRT of 11.7 h in the LG. Compared to systemic delivery of Rapa every other day for 2 weeks (seven doses), a single intra-LG depot of Rapa representing 16-fold less total drug was sufficient to inhibit LG inflammation and improve tear production. This treatment modality further reduced markers of hyperglycemia and hyperlipidemia while showing no evidence of necrosis or fibrosis in the LG. This approach represents a potential new therapy for SS-related autoimmune dacryoadenitis, which may be adapted for local delivery at other sites of inflammation; furthermore, these findings reveal the utility of optical imaging for monitoring the disposition of locally administered therapeutics.


Asunto(s)
Dacriocistitis , Aparato Lagrimal , Síndrome de Sjögren , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos NOD , Sirolimus , Lágrimas
12.
Front Immunol ; 11: 1475, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849505

RESUMEN

Sjögren's Syndrome (SS) is an autoimmune disease characterized by lymphocytic infiltration and loss of function of moisture-producing exocrine glands as well as systemic inflammation. SS diagnosis is cumbersome, subjective and complicated by manifestation of symptoms that overlap with those of other rheumatic and ocular diseases. Definitive diagnosis averages 4-5 years and this delay may lead to irreversible tissue damage. Thus, there is an urgent need for diagnostic biomarkers for earlier detection of SS. Extracellular vesicles called exosomes carry functional small non-coding RNAs which play a critical role in maintaining cellular homeostasis via transcriptional and translational regulation of mRNA. Alterations in levels of specific exosomal miRNAs may be predictive of disease status. Here, we have assessed serum exosomal RNA using next generation sequencing in a discovery cohort of the NOD mouse, a model of early-intermediate SS, to identify dysregulated miRNAs that may be indicative of SS. We found five miRNAs upregulated in serum exosomes of NOD mice with an adjusted p < 0.05-miRNA-127-3p, miRNA-409-3p, miRNA-410-3p, miRNA-541-5p, and miRNA-540-5p. miRNAs 127-3p and 541-5p were also statistically significantly upregulated in a validation cohort of NOD mice. Pathway analysis and existing literature indicates that differential expression of these miRNAs may dysregulate pathways involved in inflammation. Future studies will apply these findings in a human cohort to understand how they are correlated with manifestations of SS as well as understanding their functional role in systemic autoimmunity specific to SS.


Asunto(s)
Biomarcadores/metabolismo , MicroARN Circulante/genética , Exosomas/genética , Marcadores Genéticos/genética , Síndrome de Sjögren/diagnóstico , Animales , Modelos Animales de Enfermedad , Exosomas/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inflamación/genética , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos NOD , Transcriptoma
13.
Transl Vis Sci Technol ; 9(8): 23, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32855870

RESUMEN

Purpose: To evaluate the effects of vascular endothelial growth factor-A (VEGF-A) gene editing in human retinal pigment epithelial (RPE) cells and human Muller cells, which are the main VEGF-A producing cells in the eye. Methods: CRISPR-Cas9 ribonucleoprotein was used to target exon 1 in VEGF-A gene. Lipofectamine CRISPRMAX was used as a vehicle. In vitro gene editing efficiency was assessed on oligonucleotides and genomic DNAs. Sanger sequencing was performed to detect indels. VEGF-A messenger RNA and protein expressions were assessed using quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. Results: In vitro cleavage assay on a 60-nucleotide DNA duplex showed 88% cleavage of the precursor. The cleavage efficiency was 40% in RPE cells and 32% in Muller cells. Sanger sequencing in the CRISPR-Cas9 treated RPE and Muller cells showed indels at the predicted cut site in both cells. After the VEGF-A gene disruption, VEGF-A protein levels decreased 43% in RPE cells (P < 0.0001) and 38% in Muller cells (P < 0.0001). Conclusions: CRISPR-Cas9-mediated gene disruption resulted in a significant decrease in the VEGF-A gene protein expression in human RPE and Muller cells. CRISPR-Cas9 ribonucleoprotein may allow simultaneous targeting of multiple VEGF-A producing cells. Translational Relevance: VEGF-A gene disruption using CRISPR-Cas9 ribonucleoprotein has a potential in treating retinal vascular diseases.


Asunto(s)
Sistemas CRISPR-Cas , Factor A de Crecimiento Endotelial Vascular , Sistemas CRISPR-Cas/genética , Células Ependimogliales/metabolismo , Células Epiteliales/metabolismo , Humanos , Pigmentos Retinianos , Ribonucleoproteínas/genética , Factor A de Crecimiento Endotelial Vascular/genética
14.
Adv Drug Deliv Rev ; 157: 118-141, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32758615

RESUMEN

Multidisciplinary research efforts in the field of drug delivery have led to the development of a variety of drug delivery systems (DDS) designed for site-specific delivery of diagnostic and therapeutic agents. Since efficient uptake of drug carriers into target cells is central to effective drug delivery, a comprehensive understanding of the biological pathways for cellular internalization of DDS can facilitate the development of DDS capable of precise tissue targeting and enhanced therapeutic outcomes. Diverse methods have been applied to study the internalization mechanisms responsible for endocytotic uptake of extracellular materials, which are also the principal pathways exploited by many DDS. Chemical inhibitors remain the most commonly used method to explore endocytotic internalization mechanisms, although genetic methods are increasingly accessible and may constitute more specific approaches. This review highlights the molecular basis of internalization pathways most relevant to internalization of DDS, and the principal methods used to study each route. This review also showcases examples of DDS that are internalized by each route, and reviews the general effects of biophysical properties of DDS on the internalization efficiency. Finally, options for intracellular trafficking and targeting of internalized DDS are briefly reviewed, representing an additional opportunity for multi-level targeting to achieve further specificity and therapeutic efficacy.


Asunto(s)
Membrana Celular/metabolismo , Sistemas de Liberación de Medicamentos , Endocitosis/fisiología , Animales , Transporte Biológico/fisiología , Portadores de Fármacos/química , Humanos
15.
Int J Mol Sci ; 21(17)2020 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-32859014

RESUMEN

Lacripep is a therapeutic peptide derived from the human tear protein, Lacritin. Lacripep interacts with syndecan-1 and induces mitogenesis upon the removal of heparan sulfates (HS) that are attached at the extracellular domain of syndecan-1. The presence of HS is a prerequisite for the syndecan-1 clustering that stimulates exosome biogenesis and release. Therefore, syndecan-1-mediated mitogenesis versus HS-mediated exosome biogenesis are assumed to be mutually exclusive. This study introduces a biosynthesized fusion between Lacripep and an elastin-like polypeptide named LP-A96, and evaluates its activity on cell motility enhancement versus exosome biogenesis. LP-A96 activates both downstream pathways in a dose-dependent manner. HCE-T cells at high confluence treated with 1 µM LP-A96 enhanced cell motility equipotent to Lacripep. However, cells at low density treated with 1 µM LP-A96 generated a 210-fold higher number of exosomes compared to those treated at low density with Lacripep. As monovalent Lacripep is capable of enhancing cell motility but not exosome biogenesis, activation of exosome biogenesis by LP-A96 not only suggests its utility as a novel molecular tool to study the Lacritin biology in the corneal epithelium but also implies activity as a potential therapeutic peptide that can further improve ocular surface health through the induction of exosomes.


Asunto(s)
Epitelio Corneal/citología , Exosomas/metabolismo , Glicoproteínas/química , Péptidos/farmacología , Calcio/metabolismo , Línea Celular , Movimiento Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Elastina/química , Epitelio Corneal/efectos de los fármacos , Epitelio Corneal/metabolismo , Humanos , Péptidos/química , Transducción de Señal/efectos de los fármacos , Sindecano-1/metabolismo
16.
ACS Biomater Sci Eng ; 6(1): 198-204, 2020 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-32542186

RESUMEN

Caveolae are membrane organelles formed by submicron invaginations in the plasma membrane, and are involved in mechanosensing, cell signaling, and endocytosis. Although implicated broadly in physiology and pathophysiology, better tools are required to elucidate the precise role of caveolar processes through selective activation and inactivation of their trafficking. Our group recently reported that thermally-responsive elastin-like polypeptides (ELPs) can trigger formation of 'genetically engineered protein microdomains (GEPMs)' functionalized with either Clathrin-light chain or the epidermal growth factor receptor. This manuscript is the first report of this strategy to modulate caveolin-1 (CAV1). By attaching different ELP sequences to CAV1, mild heating can be used to self-assemble CAV1-ELP microdomains inside of cells. The temperature of self-assembly can be controlled by tuning the ELP sequence. The formation of CAV1-ELP microdomains internalizes Cholera Toxin Subunit B, a commonly used marker of caveolae mediated endocytosis. CAV1-ELPs also colocalize with Cavin 1, an essential component of functional caveolae biogenesis. With the emerging significance of caveolae in health and disease and the lack of specific probes to rapidly and reversibly affect caveolar function, CAV1-ELP microdomains are a new tool to rapidly probe caveolae associated processes in endocytosis, cell signaling, and mechanosensing.


Asunto(s)
Caveolas , Caveolina 1 , Caveolas/metabolismo , Caveolina 1/genética , Elastina , Endocitosis , Temperatura
17.
Int J Mol Sci ; 21(8)2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32326657

RESUMEN

The autoimmune disorder, Sjögren's syndrome (SS), is characterized by lymphocytic infiltration and loss of function of exocrine glands such as the lacrimal gland (LG) and salivary gland. SS-associated changes in the LG are associated with the development of autoimmune-mediated dry eye disease. We have previously reported the accumulation of intercellular adhesion molecule 1 (ICAM-1) in the LG of Non-Obese Diabetic (NOD) mice, a murine model of autoimmune-mediated dry eye in SS, in both LG acinar cells and infiltrating lymphocytes. ICAM-1 initiates T-cell activation and can trigger T-cell migration through binding to lymphocyte function-associated 1 antigen (LFA). To modulate this interaction, this study introduces a new tool, a multivalent biopolymeric nanoparticle assembled from a diblock elastin-like polypeptide (ELP) using the S48I48 (SI) ELP scaffold fused with a mouse ICAM-1 targeting peptide to form IBP-SI. IBP-SI forms a multivalent, monodisperse nanoparticle with a radius of 21.9 nm. Unlike the parent SI, IBP-SI binds mouse ICAM-1 and is internalized by endocytosis into transfected HeLa cells before it accumulates in lysosomes. In vitro assays measuring lymphocyte adhesion to Tumor Necrosis Factor TNF-α-treated bEnd.3 cells, which express high levels of ICAM-1, show that adhesion is inhibited by IBP-SI but not by SI, with IC50 values of 62.7 µM and 81.2 µM, respectively, in two different assay formats. IBP-SI, but not SI, also blocked T-cell proliferation in a mixed lymphocyte reaction by 74% relative to proliferation in an untreated mixed cell reaction. These data suggest that a biopolymeric nanoparticle with affinity for ICAM-1 can disrupt ICAM-1 and LFA interactions in vitro and may have further utility as an in vivo tool or potential therapeutic.


Asunto(s)
Síndromes de Ojo Seco/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Antígeno-1 Asociado a Función de Linfocito/inmunología , Linfocitos/inmunología , Nanopartículas/química , Síndrome de Sjögren/metabolismo , Linfocitos T/inmunología , Animales , Enfermedades Autoinmunes/metabolismo , Enfermedades Autoinmunes/patología , Biopolímeros/química , Proliferación Celular/efectos de los fármacos , Síndromes de Ojo Seco/inmunología , Elastina/química , Endocitosis , Células HeLa , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Concentración 50 Inhibidora , Molécula 1 de Adhesión Intercelular/genética , Aparato Lagrimal/inmunología , Aparato Lagrimal/metabolismo , Aparato Lagrimal/patología , Antígeno-1 Asociado a Función de Linfocito/metabolismo , Lisosomas/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Péptidos/química , Síndrome de Sjögren/inmunología , Factor de Necrosis Tumoral alfa/farmacología
18.
Biomark Med ; 14(2): 151-163, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32064896

RESUMEN

Tears are a known source of biomarkers for both ocular and systemic diseases with particular advantages; specifically, the noninvasiveness of sample collection and a unique and increasingly better-defined protein composition. Here, we discuss our rationale for use of tears for discovery of biomarkers for Parkinson's disease (PD). These reasons include literature supporting changes in tear flow and composition in PD, and the interconnections between the ocular surface system and neurons affected in PD. We highlight recent data on the identification of tear biomarkers including oligomeric α-synuclein, associated with neuronal degeneration in PD, in tears of PD patients and discuss possible sources for its release into tears. Challenges and next steps for advancing such biomarkers to clinical usage are highlighted.


Asunto(s)
Biomarcadores/metabolismo , Enfermedad de Parkinson/metabolismo , Lágrimas/metabolismo , alfa-Sinucleína/metabolismo , Humanos , Aparato Lagrimal/metabolismo , Neuronas/metabolismo , Enfermedad de Parkinson/diagnóstico , Multimerización de Proteína , Transporte de Proteínas , Sensibilidad y Especificidad , alfa-Sinucleína/química
19.
Sci Rep ; 10(1): 1455, 2020 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-31996771

RESUMEN

Autoimmune dacryoadenitis and altered lacrimal gland (LG) secretion are features of Sjögren's syndrome (SS). Activity of cathepsin S (CTSS), a cysteine protease, is significantly and specifically increased in SS patient tears. The soluble chemokine, CX3CL1 (fractalkine), is cleaved from membrane-bound CX3CL1 by proteases including CTSS. We show that CX3CL1 is significantly elevated by 2.5-fold in tears (p = 0.0116) and 1.4-fold in LG acinar cells (LGAC)(p = 0.0026) from male NOD mice, a model of autoimmune dacryoadenitis in SS, relative to BALB/c controls. Primary mouse LGAC and human corneal epithelial cells (HCE-T cells) exposed to interferon-gamma, a cytokine elevated in SS, showed up to 9.6-fold (p ≤ 0.0001) and 25-fold (p ≤ 0.0001) increases in CX3CL1 gene expression, and 1.9-fold (p = 0.0005) and 196-fold (p ≤ 0.0001) increases in CX3CL1 protein expression, respectively. Moreover, exposure of HCE-T cells to recombinant human CTSS at activity equivalent to that in SS patient tears increased cellular CX3CL1 gene and protein expression by 2.8-fold (p = 0.0021) and 5.1-fold (p ≤ 0.0001), while increasing CX3CL1 in culture medium by 5.8-fold (p ≤ 0.0001). Flow cytometry demonstrated a 4.5-fold increase in CX3CR1-expressing immune cells (p ≤ 0.0001), including increased T-cells and macrophages, in LG from NOD mice relative to BALB/c. CTSS-mediated induction/cleavage of CX3CL1 may contribute to ocular surface and LG inflammation in SS.


Asunto(s)
Catepsinas/metabolismo , Quimiocina CX3CL1/metabolismo , Epitelio Corneal/metabolismo , Aparato Lagrimal/inmunología , Síndrome de Sjögren/inmunología , Linfocitos T/inmunología , Lágrimas/metabolismo , Animales , Células Cultivadas , Quimiocina CX3CL1/genética , Dacriocistitis , Modelos Animales de Enfermedad , Humanos , Interferón gamma/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos NOD , Regulación hacia Arriba
20.
Eye Contact Lens ; 46 Suppl 2: S70-S83, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31369467

RESUMEN

Tears are highly concentrated in proteins relative to other biofluids, and a notable fraction of tear proteins are proteases and protease inhibitors. These components are present in a delicate equilibrium that maintains ocular surface homeostasis in response to physiological and temporal cues. Dysregulation of the activity of protease and protease inhibitors in tears occurs in ocular surface diseases including dry eye and infection, and ocular surface conditions including wound healing after refractive surgery and contact lens (CL) wear. Measurement of these changes can provide general information regarding ocular surface health and, increasingly, has the potential to give specific clues regarding disease diagnosis and guidance for treatment. Here, we review three major categories of tear proteases (matrix metalloproteinases, cathepsins, and plasminogen activators [PAs]) and their endogenous inhibitors (tissue inhibitors of metalloproteinases, cystatins, and PA inhibitors), and the changes in these factors associated with dry eye, infection and allergy, refractive surgery, and CLs. We highlight suggestions for development of these and other protease/protease inhibitor biomarkers in this promising field.


Asunto(s)
Síndromes de Ojo Seco/metabolismo , Proteínas del Ojo/metabolismo , Péptido Hidrolasas/metabolismo , Inhibidores de Proteasas/metabolismo , Lágrimas/metabolismo , Biomarcadores/metabolismo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...