Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Integr Environ Assess Manag ; 20(1): 263-278, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37340847

RESUMEN

Natural and seminatural habitats of soil living organisms in cultivated landscapes can be subject to unintended exposure by active substances of plant protection products (PPPs) used in adjacent fields. Spray-drift deposition and runoff are considered major exposure routes into such off-field areas. In this work, we develop a model (xOffFieldSoil) and associated scenarios to estimate exposure of off-field soil habitats. The modular model approach consists of components, each addressing a specific aspect of exposure processes, for example, PPP use, drift deposition, runoff generation and filtering, estimation of soil concentrations. The approach is spatiotemporally explicit and operates at scales ranging from local edge-of-field to large landscapes. The outcome can be aggregated and presented to the risk assessor in a way that addresses the dimensions and scales defined in specific protection goals (SPGs). The approach can be used to assess the effect of mitigation options, for example, field margins, in-field buffers, or drift-reducing technology. The presented provisional scenarios start with a schematic edge-of-field situation and extend to real-world landscapes of up to 5 km × 5 km. A case study was conducted for two active substances of different environmental fate characteristics. Results are presented as a collection of percentiles over time and space, as contour plots, and as maps. The results show that exposure patterns of off-field soil organisms are of a complex nature due to spatial and temporal variabilities combined with landscape structure and event-based processes. Our concepts and analysis demonstrate that more realistic exposure data can be meaningfully consolidated to serve in standard-tier risk assessments. The real-world landscape-scale scenarios indicate risk hot-spots that support the identification of efficient risk mitigation. As a next step, the spatiotemporally explicit exposure data can be directly coupled to ecological effect models (e.g., for earthworms or collembola) to conduct risk assessments at biological entity levels as required by SPGs. Integr Environ Assess Manag 2024;20:263-278. © 2023 Applied Analysis Solutions LLC and WSC Scientific GmbH and Bayer AG and The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Asunto(s)
Ecosistema , Suelo , Medición de Riesgo , Ecotoxicología , Modelos Teóricos
2.
Integr Environ Assess Manag ; 19(4): 862-869, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36537576

RESUMEN

The Brazilian Environmental Authority (IBAMA) has recently identified soil organisms as a priority area for risk assessment development for plant protection products. This includes consideration of which species in soil fauna are important to be tested for risk assessment purposes, which ecotoxicological tests should be used, and which exposure models would be suitable, considering Brazilian soils, local agricultural practices, and local biodiversity. In this brief communication, we present proposals and recommendations for the selection of appropriate regulatory exposure assessment techniques to support initial or foundation tier assessment. Integr Environ Assess Manag 2023;19:862-869. © 2022 FMC Corporation, Syngenta, Adama, Bayer AG, BASF SE. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Asunto(s)
Agricultura , Ecotoxicología , Brasil , Medición de Riesgo , Suelo/química
3.
Sci Total Environ ; 809: 151096, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-34743820

RESUMEN

Artificial sediment used in studies according to OECD 218/219 (Sediment Water Chironomid Toxicity Test Using Spiked Sediment/Water) does not necessarily mirror the characteristics of natural sediments. To investigate the influence of sediment characteristics on the spatial-temporal behaviors of bixafen (KfOM = 2244 mL/g), fluopyram (KfOM = 162 mL/g) and N,N-dimethylsulfamide (KfOM ≈ 0 mL/g), experiments according to OECD 218/219 with two contrasting natural sediments were conducted. The silt loam sediment provided a high content of organic matter (OM) (13.1%), while the OM (0.45%) of the sandy sediment was low. Diffusion into (OECD 219) or out (OECD 218) of the sediment was dependent on the extent of adsorption, which is linked to the model compounds ́ adsorption affinities and the sediments ́ OM. Consequently, N,N-dimethylsulfamide showed unhindered mobility in each experimental set up, while the high adsorption affinities of fluopyram and bixafen limited the diffusion in the respective sediments. Therefore, in experiments with the silt loam sediment, both compounds revealed a limited mobility and either accumulated in the top 5 mm of the sediment (OECD 219) or remained homogenously distributed over the sediment depth (OECD 218). A greater mobility was observed within the sandy sediment.The influence of OM as found in a study using artificial sediment could be confirmed. Moreover, the applicability of a TOXSWA model was reassured to predict the measured concentrations at different sediment depths. TOXSWA is used in the regulatory exposure assessment to simulate the behavior of pesticides in surface waters. Calibration of three driving input parameters by inverse modelling (diffusion-, adsorption coefficient and OM) revealed no potential for improvement. The core sampling technique used and the model may contribute to a more realistic determination of concentration to which the Chironomid larvae are exposed to. This applies to water sediment test systems where the test organisms do not evenly inhabit the sediment.


Asunto(s)
Plaguicidas , Contaminantes Químicos del Agua , Adsorción , Sedimentos Geológicos , Organización para la Cooperación y el Desarrollo Económico , Contaminantes Químicos del Agua/análisis
4.
Environ Sci Pollut Res Int ; 28(39): 55678-55689, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34142318

RESUMEN

Meaningful assessment of pesticide fate in soils and plants is based on fate models that represent all relevant processes. With mechanistic models, these processes can be simulated based on soil, substance, and plant properties. We present a mechanistic model that simulates pesticide uptake from soil and investigate how it is influenced, depending on the governing uptake process, by root and substance properties and by distributions of the substance and water in the soil profile. A new root solute uptake model based on a lumped version of the Trapp model (Trapp, 2000) was implemented in a coupled version of R-SWMS-ParTrace models for 3-D water flow and solute transport in soil and root systems. Solute uptake was modeled as two individual processes: advection with the transpiration stream and diffusion through the root membrane. We set up the model for a FOCUS scenario used in the European Union (EU) for pesticide registration. Considering a single vertical root and advective uptake only, the root hydraulic properties could be defined so that water and substance uptake and substance fate in soil showed a good agreement with the results of the 1D PEARL model, one of the reference models used in the EU for pesticide registration. Simulations with a complex root system and using root hydraulic parameters reported in the literature predicted larger water uptake from the upper root zone, leading to larger pesticide uptake when pesticides are concentrated in the upper root zone. Dilution of root water concentrations at the top root zone with water with low pesticide concentration taken up from the bottom of the root zone leads to larger uptake of solute when uptake was simulated as a diffusive process. This illustrates the importance of modeling uptake mechanistically and considering root and solute physical and chemical properties, especially when root-zone pesticide concentrations are non-uniform.


Asunto(s)
Plaguicidas , Unión Europea
5.
Chemosphere ; 279: 130424, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33887594

RESUMEN

A novel active sampling method enabled determination of sediment depth profiles revealing the spatial distribution of model compounds N,N-dimethylsulfamide, fluopyram and bixafen (low, medium, high adsorption affinity) in sediment microcosms according to OECD Test 218/219 (Sediment-Water Chironomid Toxicity Test Using Spiked Sediment/Spiked Water). After the overlying water was removed, plastic tubes were inserted into the sediment and the microcosms were frozen. For depth-related analysis, each "sediment core" was mounted in a cutting device and sawed into three 5-mm-slices, respectively (top, middle, bottom). Each slice was centrifuged for sediment and pore water separation. By various sampling dates within 28 days, we could follow the behavior of model compounds depending on sorption affinities and display specific distribution patterns within the sediment. N,N-dimethylsulfamide showing no sediment adsorption, migrated unhindered in (OECD 219) and out (OECD 218) of the sediment via pore water, resulting in homogenous distributions in both test designs. Fluopyram with moderate adsorption affinity revealed a concentration gradient with declining amounts from top to bottom layer (OECD 219) and higher amounts in the middle and bottom layer as compared to the top layer (OECD 218). Bixafen providing a strong adsorption affinity accumulated in the top layer in OECD 219, while no concentration gradients became visible in OECD 218. For establishing a Toxic Substances in Surface Waters (TOXSWA) model, we compared our measurements with simulated results revealing good agreements. The presented methodology is a useful tool to determine more realistic sediment and pore water concentrations, which the Chironomid larvae are exposed to.


Asunto(s)
Chironomidae , Contaminantes Químicos del Agua , Animales , Sedimentos Geológicos , Larva , Pruebas de Toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
6.
Environ Toxicol Chem ; 36(12): 3223-3231, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28727171

RESUMEN

In a recent scientific opinion of the European Food Safety Authority it is argued that the accumulation of plant protection products in sediments over long time periods may be an environmentally significant process. Therefore, the European Food Safety Authority proposed a calculation to account for plant protection product accumulation. This calculation, however, considers plant protection product degradation within sediment as the only dissipation route, and does not account for sediment dynamics or back-diffusion into the water column. The hydraulic model Hydrologic Engineering Center-River Analysis System (HEC-RAS; US Army Corps of Engineers) was parameterized to assess sediment transport and deposition dynamics within the FOrum for Co-ordination of pesticide fate models and their USe (FOCUS) scenarios in simulations spanning 20 yr. The results show that only 10 to 50% of incoming sediment would be deposited. The remaining portion of sediment particles is transported across the downstream boundary. For a generic plant protection product substance this resulted in deposition of only 20 to 50% of incoming plant protection product substance. In a separate analysis, the FOCUS TOXSWA model was utilized to examine the relative importance of degradation versus back-diffusion as loss processes from the sediment compartment for a diverse range of generic plant protection products. In simulations spanning 20 yr, it was shown that back-diffusion was generally the dominant dissipation process. The results of the present study show that sediment dynamics and back-diffusion should be considered when calculating long-term plant protection product accumulation in sediment. Neglecting these may lead to a systematic overestimation of accumulation. Environ Toxicol Chem 2017;36:3223-3231. © 2017 SETAC.


Asunto(s)
Agua Dulce/análisis , Sedimentos Geológicos/química , Modelos Teóricos , Contaminantes Químicos del Agua/análisis , Conservación de los Recursos Naturales , Difusión , Plaguicidas/análisis , Plantas , Ríos , Factores de Tiempo , Movimientos del Agua
7.
Integr Environ Assess Manag ; 12(4): 643-50, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26620775

RESUMEN

In the first step of earthworm risk assessment for plant protection products (PPPs), the risk is assessed by comparing the no-observed effect levels (NOELs) from laboratory reproduction tests with the predicted exposure of the PPP in soil, while applying a trigger value (assessment factor [AF]) to cover uncertainties. If this step indicates a potential risk, field studies are conducted. However, the predicted environmental concentration in soil, which can be calculated, for example, for different soil layers (ranging from 0-1 cm to 0-20 cm), and the AF determine the conservatism that is applied in this first step. In this review paper, the tier 1 earthworm risk assessment for PPPs is calibrated by comparing the NOEL in earthworm reproduction tests with effect levels on earthworm populations under realistic field conditions. A data set of 54 pairs of studies conducted in the laboratory and in the field with the same PPP was compiled, allowing a direct comparison of relevant endpoints. The results indicate that a tier 1 AF of 5 combined with a regulatory relevant soil layer of 0 to 5 cm provides a conservative tier 1 risk assessment. A risk was identified by the tier 1 risk assessment in the majority of the cases at application rates that were of low risk for natural earthworm populations under field conditions. Increasing the conservatism in the tier 1 risk assessment by reducing the depth of the regulatory relevant soil layer or by increasing the tier 1 AF would increase the number of false positives and trigger a large number of additional field studies. This increased conservatism, however, would not increase the margin of safety for earthworm populations. The analysis revealed that the risk assessment is conservative if an AF of 5 and a regulatory relevant soil layer of 0 to 5 cm is used. Integr Environ Assess Manag 2016;12:643-650. © 2015 SETAC.


Asunto(s)
Monitoreo del Ambiente/métodos , Oligoquetos/fisiología , Contaminantes del Suelo/toxicidad , Animales , Bioensayo , Monitoreo del Ambiente/normas , Medición de Riesgo/métodos
8.
Environ Toxicol Chem ; 31(4): 899-908, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22328269

RESUMEN

A flow-through system was developed to investigate the effects of time-variable exposure of pesticides on algae. A recently developed algae population model was used for simulations supported and verified by laboratory experiments. Flow-through studies with Desmodesmus subspicatus and Pseudokirchneriella subcapitata under time-variable exposure to isoproturon were performed, in which the exposure patterns were based on the results of FOrum for Co-ordination of pesticide fate models and their USe (FOCUS) model calculations for typical exposure situations via runoff or drain flow. Different types of pulsed exposure events were realized, including a whole range of repeated pulsed and steep peaks as well as periods of constant exposure. Both species recovered quickly in terms of growth from short-term exposure and according to substance dissipation from the system. Even at a peak 10 times the maximum predicted environmental concentration of isoproturon, only transient effects occurred on algae populations. No modified sensitivity or reduced growth was observed after repeated exposure. Model predictions of algal growth in the flow-through tests agreed well with the experimental data. The experimental boundary conditions and the physiological properties of the algae were used as the only model input. No calibration or parameter fitting was necessary. The combination of the flow-through experiments with the algae population model was revealed to be a powerful tool for the assessment of pulsed exposure on algae. It allowed investigating the growth reduction and recovery potential of algae after complex exposure, which is not possible with standard laboratory experiments alone. The results of the combined approach confirm the beneficial use of population models as supporting tools in higher-tier risk assessments of pesticides.


Asunto(s)
Chlorophyta/efectos de los fármacos , Modelos Teóricos , Plaguicidas/farmacología , Compuestos de Fenilurea/farmacología , Chlorophyta/crecimiento & desarrollo , Ecología/métodos , Exposición a Riesgos Ambientales/efectos adversos , Luz , Fósforo/metabolismo , Dinámica Poblacional , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...