Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Dev Cell ; 2024 Jun 11.
Article En | MEDLINE | ID: mdl-38878774

Amyotrophic lateral sclerosis (ALS) is a rapidly progressing, highly heterogeneous neurodegenerative disease, underscoring the importance of obtaining information to personalize clinical decisions quickly after diagnosis. Here, we investigated whether ALS-relevant signatures can be detected directly from biopsied patient fibroblasts. We profiled familial ALS (fALS) fibroblasts, representing a range of mutations in the fused in sarcoma (FUS) gene and ages of onset. To differentiate FUS fALS and healthy control fibroblasts, machine-learning classifiers were trained separately on high-content imaging and transcriptional profiles. "Molecular ALS phenotype" scores, derived from these classifiers, captured a spectrum from disease to health. Interestingly, these scores negatively correlated with age of onset, identified several pre-symptomatic individuals and sporadic ALS (sALS) patients with FUS-like fibroblasts, and quantified "movement" of FUS fALS and "FUS-like" sALS toward health upon FUS ASO treatment. Taken together, these findings provide evidence that non-neuronal patient fibroblasts can be used for rapid, personalized assessment in ALS.

2.
Skin Health Dis ; 4(3): e360, 2024 Jun.
Article En | MEDLINE | ID: mdl-38846701

Background: Actinic keratoses (AK) are pre-malignant skin lesions caused by chronic sun exposure. Progression from an AK to intraepidermal carcinoma (IEC) and a cutaneous squamous cell carcinoma (SCC) is well known but the rate of transformation to an invasive SCC is highly variable. Since no definitive biomarkers are available, treatment decisions are made ad hoc. Objectives: To fully characterise our AK to SCC progression series, we performed microRNA (miRNA) microarray expression profiling of normal and photodamaged skin, as well as AKs, IEC, and invasive SCCs. Methods: The study recruited 27 patients who donated fresh biopsies of normal skin, photodamaged skin, AK, IEC, and SCC (n = 67 specimens). All miRbase (v.21) miRNAs were profiled to identify miRNAs related to SCC progression. miRNAs were validated using qRT-PCR and in vitro phenotypic assays. Results: There were 234 robustly expressed miRNAs across the tissue collection, which resulted in 20 miRNA that were differentially expressed ((cor)p ≤ 0.05 and ≥ 10 fold) between normal skin and SCC. Hierarchical clustering all samples illustrated that AKs, IEC, and SCCs were largely indistinguishable, which confirms the premalignant status of an AK. A panel of miRNAs showed significant dysregulation between normal and photodamaged skin and AK. Importantly, we found miR-34a-5p and miR-31-5p had significant differential expression between AKs and IEC and IEC and SCC respectively. Phenotypic assays determined that the miR-31 duplex had opposing effects on SCC cell lines which suggests that dysregulation of this duplex may be related to the dynamic control of progression of transformed keratinocytes. Conclusions: This study confirmed the continuum of AK with IEC and SCC highlighting that miRNA expression plays a role in keratinocyte transformation. Development of our putative miRNA biomarker candidates is warranted to aid in clinical management of patients experiencing high AK load to determine the most appropriate treatment.

3.
Drug Resist Updat ; 71: 100993, 2023 Nov.
Article En | MEDLINE | ID: mdl-37639774

AIMS: Drivers of the drug tolerant proliferative persister (DTPP) state have not been well investigated. Histone H3 lysine-4 trimethylation (H3K4me3), an active histone mark, might enable slow cycling drug tolerant persisters (DTP) to regain proliferative capacity. This study aimed to determine H3K4me3 transcriptionally active sites identifying a key regulator of DTPPs. METHODS: Deploying a model of adaptive cancer drug tolerance, H3K4me3 ChIP-Seq data of DTPPs guided identification of top transcription factor binding motifs. These suggested involvement of O-linked N-acetylglucosamine transferase (OGT), which was confirmed by metabolomics analysis and biochemical assays. OGT impact on DTPPs and adaptive resistance was explored in vitro and in vivo. RESULTS: H3K4me3 remodeling was widespread in CPG island regions and DNA binding motifs associated with O-GlcNAc marked chromatin. Accordingly, we observed an upregulation of OGT, O-GlcNAc and its binding partner TET1 in chronically treated cancer cells. Inhibition of OGT led to loss of H3K4me3 and downregulation of genes contributing to drug resistance. Genetic ablation of OGT prevented acquired drug resistance in in vivo models. Upstream of OGT, we identified AMPK as an actionable target. AMPK activation by acetyl salicylic acid downregulated OGT with similar effects on delaying acquired resistance. CONCLUSION: Our findings uncover a fundamental mechanism of adaptive drug resistance that governs cancer cell reprogramming towards acquired drug resistance, a process that can be exploited to improve response duration and patient outcomes.


AMP-Activated Protein Kinases , Histones , Humans , Histones/genetics , Down-Regulation , Mixed Function Oxygenases , Proto-Oncogene Proteins
4.
Oncotarget ; 9(9): 8206-8222, 2018 Feb 02.
Article En | MEDLINE | ID: mdl-29492189

Besides somatic mutations or drug efflux, epigenetic reprogramming can lead to acquired drug resistance. We recently have identified early stress-induced multi-drug tolerant cancer cells termed induced drug-tolerant cells (IDTCs). Here, IDTCs were generated using different types of cancer cell lines; melanoma, lung, breast and colon cancer. A common loss of the H3K4me3 and H3K27me3 and gain of H3K9me3 mark was observed as a significant response to drug exposure or nutrient starvation in IDTCs. These epigenetic changes were reversible upon drug holidays. Microarray, qRT-PCR and protein expression data confirmed the up-regulation of histone methyltransferases (SETDB1 and SETDB2) which contribute to the accumulation of H3K9me3 concomitantly in the different cancer types. Genome-wide studies suggest that transcriptional repression of genes is due to concordant loss of H3K4me3 and regional increment of H3K9me3. Conversely, genome-wide CpG site-specific DNA methylation showed no common changes at the IDTC state. This suggests that distinct histone methylation patterns rather than DNA methylation are driving the transition from parental to IDTCs. In addition, silencing of SETDB1/2 reversed multi drug tolerance. Alterations of histone marks in early multi-drug tolerance with an increment in H3K9me3 and loss of H3K4me3/H3K27me3 is neither exclusive for any particular stress response nor cancer type specific but rather a generic response.

5.
Clin Cancer Res ; 24(5): 1090-1102, 2018 03 01.
Article En | MEDLINE | ID: mdl-29196297

Purpose: Identify and characterize novel combinations of sorafenib with anti-inflammatory painkillers to target difficult-to-treat RAS-mutant cancer.Experimental Design: The cytotoxicity of acetylsalicylic acid (aspirin) in combination with the multikinase inhibitor sorafenib (Nexavar) was assessed in RAS-mutant cell lines in vitro The underlying mechanism for the increased cytotoxicity was investigated using selective inhibitors and shRNA-mediated gene knockdown. In vitro results were confirmed in RAS-mutant xenograft mouse models in vivoResults: The addition of aspirin but not isobutylphenylpropanoic acid (ibruprofen) or celecoxib (Celebrex) significantly increased the in vitro cytotoxicity of sorafenib. Mechanistically, combined exposure resulted in increased BRAF/CRAF dimerization and the simultaneous hyperactivation of the AMPK and ERK pathways. Combining sorafenib with other AMPK activators, such as metformin or A769662, was not sufficient to decrease cell viability due to sole activation of the AMPK pathway. The cytotoxicity of sorafenib and aspirin was blocked by inhibition of the AMPK or ERK pathways through shRNA or via pharmacologic inhibitors of RAF (LY3009120), MEK (trametinib), or AMPK (compound C). The combination was found to be specific for RAS/RAF-mutant cells and had no significant effect in RAS/RAF-wild-type keratinocytes or melanoma cells. In vivo treatment of human xenografts in NSG mice with sorafenib and aspirin significantly reduced tumor volume compared with each single-agent treatment.Conclusions: Combination sorafenib and aspirin exerts cytotoxicity against RAS/RAF-mutant cells by simultaneously affecting two independent pathways and represents a promising novel strategy for the treatment of RAS-mutant cancers. Clin Cancer Res; 24(5); 1090-102. ©2017 AACR.


Antineoplastic Combined Chemotherapy Protocols/pharmacology , Aspirin/pharmacology , Neoplasms/drug therapy , Sorafenib/pharmacology , ras Proteins/genetics , AMP-Activated Protein Kinases/metabolism , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Aspirin/therapeutic use , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Synergism , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Mice , Mutation , Neoplasms/genetics , Proto-Oncogene Proteins B-raf/genetics , Signal Transduction/drug effects , Sorafenib/therapeutic use , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
...