Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Langmuir ; 40(28): 14455-14466, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38967440

RESUMEN

Microplastics (MPs) and nanoplastics (NPs) in water pose a global threat to human health and the environment. To develop efficient removal strategies, it is crucial to understand how these particles behave as they aggregate. However, our knowledge of the process of aggregate formation from primary particles of different sizes is limited. In this study, we analyzed the growth kinetics and structures of aggregates formed by polystyrene MPs in mono- and bidisperse systems using in situ microscopy and image analysis. Our findings show that the scaling behavior of aggregate growth remains unaffected by the primary particle size distribution, but it does delay the onset of rapid aggregation. We also performed a structural analysis that reveals the power law dependence of aggregate fractal dimension (df) in both mono- and bidisperse systems, with mean df consistent with diffusion-limited cluster aggregation (DLCA) aggregates. Our results also suggest that the df of aggregates is insensitive to the shape anisotropy. We simulated molecular forces driving aggregation of polystyrene NPs of different sizes under high ionic strength conditions. These conditions represent salt concentration in ocean water and wastewater, where the DLVO theory does not apply. Our simulation results show that the aggregation tendency of the NPs increases with the ionic strength. The increase in the aggregation is caused by the depletion of clusters of ions from the NPs surface.

2.
J Appl Physiol (1985) ; 136(1): 89-108, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37969082

RESUMEN

We present the first demonstration of chronic in vivo imaging of microglia in mice undergoing voluntary wheel running. We find that healthy mice undergoing voluntary wheel running have similar microglia dynamics, morphologies, and responses to injury when compared to sedentary mice. This suggests that exercise over a period of 1 mo does not grossly alter cortical microglial phenotypes and that exercise may exert its beneficial effects on the brain through other mechanisms. Future work examining how microglia dynamics may be altered during exercise in disease or injury models could provide further insights into the therapeutic benefit of exercise.NEW & NOTEWORTHY We demonstrate the first use of chronic in vivo imaging of microglia over time during physical exercise. We found that microglia movement, morphology, and process motility were remarkably stable during voluntary wheel running (VWR). Additionally, microglia in running mice respond similarly to laser ablation injury compared to sedentary mice. These findings indicate that VWR does not induce changes in microglia dynamics in healthy adults. Exercise may elicit positive effects on the brain through other mechanisms.


Asunto(s)
Microglía , Condicionamiento Físico Animal , Humanos , Ratones , Animales , Actividad Motora/fisiología , Condicionamiento Físico Animal/fisiología , Encéfalo
3.
Langmuir ; 38(22): 6896-6910, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35594154

RESUMEN

Asphaltene aggregation is critical to many natural and industrial processes, from groundwater contamination and remediation to petroleum utilization. Despite extensive research in the past few decades, the fundamental process of sulfur-rich asphaltene aggregation still remains not fully understood. In this work, we have investigated the particle-by-particle growth of aggregates formed with sulfur-rich asphaltene by a combined approach of in situ microscopy and molecular simulation. The experimental results show that aggregates assembled from sulfur-rich asphaltene have morphologies with time-dependent structural self-similarity, and their growth rates are aligned with a crossover behavior between classic reaction-limited aggregation and diffusion-limited aggregation. Although the particle size distribution predicted using the Smoluchowski equation deviates from the observations at the initial stage, it provides a reasonable prediction of aggregate size distribution at the later stage, even if the observed cluster coalescence has an important effect on the corresponding cluster size distribution. The simulation results show that aliphatic sulfur exerts nonmonotonic effects on asphaltene nanoaggregate formation depending on the asphaltene molecular structure. Specifically, aliphatic sulfur has a profound effect on the structure of rod-like nanoaggregates, especially when asphaltene molecules have small aromatic cores. Interactions between aliphatic sulfur and the side chain of neighboring molecules account for the repulsive forces that largely explain the polydispersity in the nanoaggregates and corresponding colloidal aggregates. These results can improve our current understanding of the complex process of sulfur-rich asphaltene aggregation and sheds light on designing efficient crude oil utilization and remediation technologies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA