Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(32): 18075-18083, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37529898

RESUMEN

We demonstrate here the assembly of a nanolayer of electrochromic iron complexes on the top of composite layers of cobalt and ruthenium complexes. Depending on the ratio of the latter two complexes, we can tailor materials that show different electron transport pathways, redox activities, and color transitions. No redox activity of the top layer, consisting of iron complexes, is observable when the relative amount of the ruthenium complexes is low in the underlying composite layer because of the insulating properties of the isostructural cobalt complexes. Increasing the amount of ruthenium complexes opens an electron transport channel, resulting in charge storage in both the cobalt and iron complexes. The trapped charges can be chemically released by redox-active ferrocyanide complexes at the film-water interface.

2.
Angew Chem Int Ed Engl ; 59(7): 2612-2617, 2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-31696626

RESUMEN

We demonstrate controlled charge trapping and release, accompanied by multiple color changes in a metallo-organic bilayer. The dual functionality of the metallo-organic materials provides fundamental insight into the metal-mediated electron transport pathways. The electrochemical processes are visualized by distinct, four color-to-color transitions: red, transparent, orange, and brown. The bilayer is composed of two elements: 1) a nanoscale gate consisting of a layer of well-defined polypyridyl ruthenium complexes bound to a flexible transparent electrode, and 2) a charge storage layer consisting of isostructural iron complexes attached to the surface of the gate. This gate mediates or blocks electron transport in response to an applied voltage. The charge storage and release depend on the oxidation state of the layer of ruthenium complexes (=gate). Combining electrochemistry with optical data revealed mechanistic information: the brown coloration of the bilayer directly relates to the formation of intermediate ruthenium species, providing evidence for catalytic positive charge release mediated through the gate.

3.
Sci Rep ; 7(1): 9498, 2017 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-28842708

RESUMEN

Copper ions play a major role in biological processes. Abnormal Cu2+ ions concentrations are associated with various diseases, hence, can be used as diagnostic target. Monitoring copper ion is currently performed by non-portable, expensive and complicated to use equipment. We present a label free and a highly sensitive electrochemical ion-detecting biosensor based on a Gly-Gly-His tripeptide layer that chelate with Cu2+ ions. The proposed sensing mechanism is that the chelation results in conformational changes in the peptide that forms a denser insulating layer that prevents RedOx species transfer to the surface. This chelation event was monitored using various electrochemical methods and surface chemistry analysis and supported by theoretical calculations. We propose a highly sensitive ion-detection biosensor that can detect Cu2+ ions in the pM range with high SNR parameter.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...