Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Biol ; 21(1): e3001942, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36603027

RESUMEN

RNA processing and degradation shape the transcriptome by generating stable molecules that are necessary for translation (rRNA and tRNA) and by facilitating the turnover of mRNA, which is necessary for the posttranscriptional control of gene expression. In bacteria and the plant chloroplast, RNA degradosomes are multienzyme complexes that process and degrade RNA. In many bacterial species, the endoribonuclease RNase E is the central component of the RNA degradosome. RNase E-based RNA degradosomes are inner membrane proteins in a large family of gram-negative bacteria (ß- and γ-Proteobacteria). Until now, the reason for membrane localization was not understood. Here, we show that a mutant strain of Escherichia coli, in which the RNA degradosome is localized to the interior of the cell, has high levels of 20S and 40S particles that are defective intermediates in ribosome assembly. These particles have aberrant protein composition and contain rRNA precursors that have been cleaved by RNase E. After RNase E cleavage, rRNA fragments are degraded to nucleotides by exoribonucleases. In vitro, rRNA in intact ribosomes is resistant to RNase E cleavage, whereas protein-free rRNA is readily degraded. We conclude that RNA degradosomes in the nucleoid of the mutant strain interfere with cotranscriptional ribosome assembly. We propose that membrane-attached RNA degradosomes in wild-type cells control the quality of ribosome assembly after intermediates are released from the nucleoid. That is, the compact structure of mature ribosomes protects rRNA against cleavage by RNase E. Turnover of a proportion of intermediates in ribosome assembly explains slow growth of the mutant strain. Competition between mRNA and rRNA degradation could be the cause of slower mRNA degradation in the mutant strain. We conclude that attachment of the RNA degradosome to the bacterial inner cytoplasmic membrane prevents wasteful degradation of rRNA precursors, thus explaining the reason for conservation of membrane-attached RNA degradosomes throughout the ß- and γ-Proteobacteria.


Asunto(s)
Proteínas de Escherichia coli , ARN Ribosómico , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Ribosomas/metabolismo , Complejos Multienzimáticos/metabolismo , ARN/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Membrana Celular/metabolismo , Bacterias/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Bacteriano/genética
2.
Annu Rev Microbiol ; 76: 533-552, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-35671533

RESUMEN

RNA degradosomes are multienzyme complexes composed of ribonucleases, RNA helicases, and metabolic enzymes. RNase E-based degradosomes are widespread in Proteobacteria. The Escherichia coli RNA degradosome is sequestered from transcription in the nucleoid and translation in the cytoplasm by localization to the inner cytoplasmic membrane, where it forms short-lived clusters that are proposed to be sites of mRNA degradation. In Caulobacter crescentus, RNA degradosomes localize to ribonucleoprotein condensates in the interior of the cell [bacterial ribonucleoprotein-bodies (BR-bodies)], which have been proposed to drive the concerted degradation of mRNA to nucleotides. The turnover of mRNA in growing cells is important for maintaining pools of nucleotides for transcription and DNA replication.Membrane attachment of the E. coli RNA degradosome is necessary to avoid wasteful degradation of intermediates in ribosome assembly. Sequestering RNA degradosomes to C. crescentus BR-bodies, which exclude structured RNA, could have a similar role in protecting intermediates in ribosome assembly from degradation.


Asunto(s)
Caulobacter crescentus , Endorribonucleasas , Escherichia coli , Complejos Multienzimáticos , Nucleótidos , Polirribonucleótido Nucleotidiltransferasa , ARN Helicasas , Estabilidad del ARN , ARN Mensajero , Caulobacter crescentus/enzimología , Caulobacter crescentus/genética , Endorribonucleasas/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Nucleótidos/metabolismo , Polirribonucleótido Nucleotidiltransferasa/genética , Polirribonucleótido Nucleotidiltransferasa/metabolismo , ARN Helicasas/genética , ARN Helicasas/metabolismo , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Mensajero/metabolismo , Ribonucleoproteínas/metabolismo
3.
mBio ; 12(5): e0193221, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34488454

RESUMEN

The essential endoribonuclease RNase E, which is a component of the Escherichia coli multienzyme RNA degradosome, has a global role in RNA processing and degradation. RNase E localizes to the inner cytoplasmic membrane in small, short-lived clusters (puncta). Rifampin, which arrests transcription, inhibits RNase E clustering and increases its rate of diffusion. Here, we show that inhibition of clustering is due to the arrest of transcription using a rifampin-resistant control strain. Two components of the RNA degradosome, the 3' exoribonuclease polynucleotide phosphorylase (PNPase) and the DEAD box RNA helicase RhlB, colocalize with RNase E in puncta. Clustering of PNPase and RhlB is inhibited by rifampin, and their diffusion rates increase, as evidenced by in vivo photobleaching measurements. Results with rifampin treatment reported here show that RNA degradosome diffusion is constrained by interaction with RNA substrate. Kasugamycin, which arrests translation initiation, inhibits formation of puncta and increases RNA degradosome diffusion rates. Since kasugamycin treatment results in continued synthesis and turnover of ribosome-free mRNA but inhibits polyribosome formation, RNA degradosome clustering is therefore polyribosome dependent. Chloramphenicol, which arrests translation elongation, results in formation of large clusters (foci) of RNA degradosomes that are distinct from puncta. Since chloramphenicol-treated ribosomes are stable, the formation of RNA degradosome foci could be part of a stress response that protects inactive polyribosomes from degradation. Our results strongly suggest that puncta are sites where translationally active polyribosomes are captured by membrane-associated RNA degradosomes. These sites could be part of a scanning process that is an initial step in mRNA degradation. IMPORTANCE Here, we show that RNase E, RhlB, and PNPase act together as components of the multienzyme RNA degradosome in polyribosome-dependent clustering to form puncta on the inner cytoplasmic membrane. Our results support the hypothesis that RNA degradosome puncta are sites of mRNA degradation. We propose that clustering of RNA degradosomes is a pre-RNase E cleavage step in which polyribosomes are scanned in a search for ribosome-free mRNA. This work is part of an emerging view that posttranscriptional events such as tRNA maturation, late steps in ribosome assembly, and mRNA degradation are membrane associated and partitioned from translation in the cytoplasm and transcription in the nucleoid. This separation could protect newly synthesized transcripts from premature destructive interactions with the RNA degradosome. The scanning of ribosomes and polyribosomes could be part of a general mechanism in which defective stable RNA or ribosome-free mRNA is targeted for destruction by the RNA degradosome.


Asunto(s)
Escherichia coli/genética , Polirribonucleótido Nucleotidiltransferasa/metabolismo , Polirribosomas/metabolismo , Estabilidad del ARN/genética , Análisis por Conglomerados , Endorribonucleasas/metabolismo , Escherichia coli/efectos de los fármacos , Proteínas de Escherichia coli/metabolismo , Exorribonucleasas , Complejos Multienzimáticos , ARN Helicasas , Procesamiento Postranscripcional del ARN , ARN Bacteriano , ARN Mensajero/metabolismo , Rifampin/farmacología
4.
RNA ; 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34099575

RESUMEN

Rifampicin, a broad-spectrum antibiotic, inhibits bacterial RNA polymerase. Here we show that rifampicin treatment of Escherichia coli results in a 50% decrease in cell size due to a terminal cell division. This decrease is a consequence of inhibition of transcription as evidenced by an isogenic rifampicin-resistant strain. There is also a 50% decrease in total RNA due mostly to a 90% decrease in 23S and 16S rRNA levels. Control experiments showed this decrease is not an artifact of our RNA purification protocol and therefore due to degradation in vivo. Since chromosome replication continues after rifampicin treatment, ribonucleotides from rRNA degradation could be recycled for DNA synthesis. Rifampicin-induced rRNA degradation occurs under different growth conditions and in different strain backgrounds. However, rRNA degradation is never complete thus permitting the re-initiation of growth after removal of rifampicin. The orderly shutdown of growth under conditions where the induction of stress genes is blocked by rifampicin is noteworthy. Inhibition of protein synthesis by chloramphenicol resulted in a partial decrease in 23S and 16S rRNA levels whereas kasugamycin treatment had no effect. Analysis of temperature-sensitive mutant strains implicate RNase E, PNPase and RNase R in rifampicin-induced rRNA degradation. We cannot distinguish between a direct role for RNase E in rRNA degradation versus an indirect role involving a slowdown of mRNA degradation. Since mRNA and rRNA appear to be degraded by the same ribonucleases, competition by rRNA is likely to result in slower mRNA degradation rates in the presence of rifampicin than under normal growth conditions.

5.
mBio ; 11(1)2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32071272

RESUMEN

Metabolic turnover of mRNA is fundamental to the control of gene expression in all organisms, notably in fast-adapting prokaryotes. In many bacteria, RNase Y initiates global mRNA decay via an endonucleolytic cleavage, as shown in the Gram-positive model organism Bacillus subtilis This enzyme is tethered to the inner cell membrane, a pseudocompartmentalization coherent with its task of initiating mRNA cleavage/maturation of mRNAs that are translated at the cell periphery. Here, we used total internal reflection fluorescence microscopy (TIRFm) and single-particle tracking (SPT) to visualize RNase Y and analyze its distribution and dynamics in living cells. We find that RNase Y diffuses rapidly at the membrane in the form of dynamic short-lived foci. Unlike RNase E, the major decay-initiating RNase in Escherichia coli, the formation of foci is not dependent on the presence of RNA substrates. On the contrary, RNase Y foci become more abundant and increase in size following transcription arrest, suggesting that they do not constitute the most active form of the nuclease. The Y-complex of three proteins (YaaT, YlbF, and YmcA) has previously been shown to play an important role for RNase Y activity in vivo We demonstrate that Y-complex mutations have an effect similar to but much stronger than that of depletion of RNA in increasing the number and size of RNase Y foci at the membrane. Our data suggest that the Y-complex shifts the assembly status of RNase Y toward fewer and smaller complexes, thereby increasing cleavage efficiency of complex substrates like polycistronic mRNAs.IMPORTANCE All living organisms must degrade mRNA to adapt gene expression to changing environments. In bacteria, initiation of mRNA decay generally occurs through an endonucleolytic cleavage. In the Gram-positive model organism Bacillus subtilis and probably many other bacteria, the key enzyme for this task is RNase Y, which is anchored at the inner cell membrane. While this pseudocompartmentalization appears coherent with translation occurring primarily at the cell periphery, our knowledge on the distribution and dynamics of RNase Y in living cells is very scarce. Here, we show that RNase Y moves rapidly along the membrane in the form of dynamic short-lived foci. These foci become more abundant and increase in size following transcription arrest, suggesting that they do not constitute the most active form of the nuclease. This contrasts with RNase E, the major decay-initiating RNase in E. coli, where it was shown that formation of foci is dependent on the presence of RNA substrates. We also show that a protein complex (Y-complex) known to influence the specificity of RNase Y activity in vivo is capable of shifting the assembly status of RNase Y toward fewer and smaller complexes. This highlights fundamental differences between RNase E- and RNase Y-based degradation machineries.


Asunto(s)
Bacillus subtilis/enzimología , Membrana Celular/metabolismo , Proteínas de la Membrana/metabolismo , Estabilidad del ARN/fisiología , Ribonucleasas/metabolismo , Bacillus subtilis/citología , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Endorribonucleasas , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Microscopía Fluorescente , ARN Bacteriano/metabolismo , ARN Mensajero/metabolismo , Ribonucleasas/genética
6.
mBio ; 8(1)2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28174308

RESUMEN

Bacteria adopt social behavior to expand into new territory, led by specialized swarmers, before forming a biofilm. Such mass migration of Bacillus subtilis on a synthetic medium produces hyperbranching dendrites that transiently (equivalent to 4 to 5 generations of growth) maintain a cellular monolayer over long distances, greatly facilitating single-cell gene expression analysis. Paradoxically, while cells in the dendrites (nonswarmers) might be expected to grow exponentially, the rate of swarm expansion is constant, suggesting that some cells are not multiplying. Little attention has been paid to which cells in a swarm are actually multiplying and contributing to the overall biomass. Here, we show in situ that DNA replication, protein translation and peptidoglycan synthesis are primarily restricted to the swarmer cells at dendrite tips. Thus, these specialized cells not only lead the population forward but are apparently the source of all cells in the stems of early dendrites. We developed a simple mathematical model that supports this conclusion. IMPORTANCE: Swarming motility enables rapid coordinated surface translocation of a microbial community, preceding the formation of a biofilm. This movement occurs in thin films and involves specialized swarmer cells localized to a narrow zone at the extreme swarm edge. In the B. subtilis system, using a synthetic medium, the swarm front remains as a cellular monolayer for up to 1.5 cm. Swarmers display high-velocity whirls and vortexing and are often assumed to drive community expansion at the expense of cell growth. Surprisingly, little attention has been paid to which cells in a swarm are actually growing and contributing to the overall biomass. Here, we show that swarmers not only lead the population forward but continue to multiply as a source of all cells in the community. We present a model that explains how exponential growth of only a few cells is compatible with the linear expansion rate of the swarm.


Asunto(s)
Bacillus subtilis/crecimiento & desarrollo , Medios de Cultivo/química , Replicación del ADN , Modelos Teóricos , Peptidoglicano/biosíntesis , Biosíntesis de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...