Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 53
1.
RSC Adv ; 13(39): 27180-27189, 2023 Sep 08.
Article En | MEDLINE | ID: mdl-37701282

Zinc oxide/Curcumin (Zn(CUR)O) nanocomposites were prepared via hydrothermal treatment of Zn(NO3)2 in the presence of hexamethylenetetramine as a stabilizing agent and CUR as a bioactive element. Three ZnO : CUR ratios were investigated, namely 57 : 43 (Zn(CUR)O-A), 60 : 40 (Zn(CUR)O-B) and 81 : 19 (Zn(CUR)O-C), as assessed by thermogravimetric analyses, with an average hydrodynamic diameter of nanoaggregates in the range of 223 to 361 nm. The interaction of CUR with ZnO via hydroxyl and ketoenol groups (as proved by X-ray photoelectron spectroscopy analyses) was found to significantly modify the key properties of ZnO nanoparticles with the obtainment of a bilobed shape (as shown by scanning electron microscopy), and influenced the growth process of the composite nanoparticles as indicated by the varying particle sizes determined by powder X-ray diffraction. The efficacy of Zn(CUR)O as anticancer agents was evaluated on MCF-7 and MDA-MB-231 cancer cells, obtaining a synergistic activity with a cell viability depending on the CUR amount within the nanocomposite. Finally, the determination of reactive oxygen species production in the presence of Zn(CUR)O was used as a preliminary evaluation of the mechanism of action of the nanocomposites.

2.
Nanoscale ; 14(29): 10483-10492, 2022 Jul 28.
Article En | MEDLINE | ID: mdl-35822883

Solid solutions of 2D transition metal trihalides are rapidly growing in interest for the search for new 2D materials with novel properties at nanoscale dimensions. In this regard, we present a synthesis method for the Cr1-xRuxCl3 solid solution and describe the behaviour of the unit cell parameters over the whole composition range, which in general follows Vegard's law in the range of a = 5.958(6)CrCl3 … 5.9731(5)RuCl3 Å, b = 10.3328(20)CrCl3 … 10.34606(21)RuCl3 Å, c = 6.110(5)CrCl3 … 6.0385(5)RuCl3 Å and ß = 108.522(15)CrCl3 … 108.8314(14)RuCl3 °. The synthesized solid solution powder was subsequently used to deposit micro- and nanosheets directly on a substrate by applying chemical vapour transport in a temperature gradient of 575 °C → 525 °C for 2 h and 650 °C → 600 °C for 0.5 h as a bottom-up approach without the need for an external transport agent. The observed chromium chloride enrichment of the deposited crystals is predicted by thermodynamic simulation. The results allow for a nanostructure synthesis of this solid solution with a predictable composition down to about 30 nm in height and lateral size of several µm. When applying a quick consecutive delamination step, it is possible to obtain few- and monolayer structures, which could be used for further studies of downscaling effects for the CrCl3-RuCl3 solid solution. X-ray photoelectron spectroscopy, transmission electron microscopy and Raman spectroscopy were used to confirm the purity and quality of the synthesized crystals.

3.
Materials (Basel) ; 15(5)2022 Feb 22.
Article En | MEDLINE | ID: mdl-35268879

With the aim of preparing hybrid hydrogels suitable for use as patches for the local treatment of squamous cell carcinoma (SCC)-affected areas, curcumin (CUR) was loaded onto graphene oxide (GO) nanosheets, which were then blended into an alginate hydrogel that was crosslinked by means of calcium ions. The homogeneous incorporation of GO within the polymer network, which was confirmed through morphological investigations, improved the stability of the hybrid system compared to blank hydrogels. The weight loss in the 100-170 °C temperature range was reduced from 30% to 20%, and the degradation of alginate chains shifted to higher temperatures. Moreover, GO enhanced the stability in water media by counteracting the de-crosslinking process of the polymer network. Cell viability assays showed that the loading of CUR (2.5% and 5% by weight) was able to reduce the intrinsic toxicity of GO towards healthy cells, while higher amounts were ineffective due to the antioxidant/prooxidant paradox. Interestingly, the CUR-loaded systems were found to possess a strong cytotoxic effect in SCC cancer cells, and the sustained CUR release (~50% after 96 h) allowed long-term anticancer efficiency to be hypothesized.

4.
Molecules ; 26(22)2021 Nov 19.
Article En | MEDLINE | ID: mdl-34834096

The performance of Carbon Nanotubes hybrid hydrogels for environmental remediation was investigated using Methylene Blue (MB), Rhodamine B (RD), and Bengal Rose (BR) as model contaminating dyes. An acrylate hydrogel network with incorporated CNT was synthesized by photo-polymerization without any preliminary derivatization of CNT surface. Thermodynamics, isothermal and kinetic studies showed favorable sorption processes with the application of an external 12 V electric field found to be able to influence the amount of adsorbed dyes: stronger interactions with cationic MB molecules (qexp and qexp12 of 19.72 and 33.45 mg g-1, respectively) and reduced affinity for anionic RD (qexp and qexp12 of 28.93 and 13.06 mg g-1, respectively) and neutral BR (qexp and qexp12 of 36.75 and 15.85 mg g-1, respectively) molecules were recorded. The influence of pH variation on dyes adsorption was finally highlighted by reusability studies, with the negligible variation of adsorption capacity after five repeated sorption cycles claiming for the suitability of the proposed systems as effective sorbent for wastewater treatment.

5.
RSC Adv ; 11(19): 11388-11397, 2021 Mar 16.
Article En | MEDLINE | ID: mdl-35423619

This study investigated the removal of nickel(ii) ions by using two sizes of graphene oxide nanoparticles (GO - 450 nm and GO - 200 nm). The thickness and lateral sheet dimensions of GO are considered to be an important adsorbent and promising method for sufficient removal of metals like nickel, lead, copper, etc. The graphite oxide was prepared by oxidation-reduction reaction (Hummers method), and the final product was labelled as GO - 450 nm. A tip sonicator was used to reduce the size of particles to 200 nm under controlled conditions (time and power of sonication). FTIR spectroscopy shows that both sizes of GO particles contain several types of oxygen groups distributed onto the surface of GO particles. Scanning electron microscopy (SEM) and the statistical analysis confirmed the formation of these two sizes of GO particles. The GO - 200 nm performed better removal of Ni(ii) compared with GO - 450 nm, due to more surfaces being available. The adsorption capacity of GO particles increased drastically from 45 mg g-1 to 75 mg g-1 for GO - 450 nm and GO - 200 nm respectively, these values were carried out after 2 h of incubation. The kinetics of adsorption and several parameters like initial concentration at equilibrium, pH, temperature, and adsorbent dose are controlled and studied by using UV-visible spectroscopy. The results indicated a significant potential of GO - 200 nm as an adsorbent for Ni(ii) ion removal. An additional experiment was performed to estimate the surface area of GO - 450 nm and GO - 200 nm, the results show that the surface areas of GO - 450 nm and GO - 200 nm are 747.8 m2 g-1 and 1052.2 m2 g-1 respectively.

6.
Inorg Chem ; 59(21): 15626-15635, 2020 Nov 02.
Article En | MEDLINE | ID: mdl-33047957

A series of solid solutions (Li2Fe1-yMny)SO with a cubic antiperovskite structure was successfully synthesized. The composition (Li2Fe0.5Mn0.5)SO was intensively studied as a cathode in Li-ion batteries showing a reversible specific capacity of 120 mA h g-1 and almost a 100% Coulombic efficiency after 50 cycles at 0.1C meaning extraction/insertion of 1 Li per formula unit during 10 h. Operando X-ray absorption spectroscopy confirmed the redox activity of both Fe2+ and Mn2+ cations during battery charge and discharge, while operando synchrotron X-ray diffraction studies revealed a reversible formation of a second isostructural phase upon Li-removal and insertion at least for the first several cycles. In comparison to (Li2Fe)SO, the presence of Mn stabilizes the crystal structure of (Li2Fe0.5Mn0.5)SO during battery operation, although post mortem TEM studies confirmed a gradual amorphization after 50 cycles. A lower specific capacity of (Li2Fe0.5Mn0.5)SO in comparison to (Li2Fe)SO is probably caused by slower kinetics, especially in the two-phase region, as confirmed by Li-diffusion coefficient measurements.

7.
Molecules ; 25(5)2020 Mar 04.
Article En | MEDLINE | ID: mdl-32143351

Carbon nanotube yarns (CNY) are a novel carbonaceous material and have received a great deal of interest since the beginning of the 21st century. CNY are of particular interest due to their useful heat conducting, electrical conducting, and mechanical properties. The electrical conductivity of carbon nanotube yarns can also be influenced by functionalization and annealing. A systematical study of this post synthetic treatment will assist in understanding what factors influences the conductivity of these materials. In this investigation, it is shown that the electrical conductivity can be increased by a factor of 2 and 5.5 through functionalization with acids and high temperature annealing respectively. The scale of the enhancement is dependent on the reducing of intertube space in case of functionalization. For annealing, not only is the highly graphitic structure of the carbon nanotubes (CNT) important, but it is also shown to influence the residual amorphous carbon in the structure. The promising results of this study can help to utilize CNY as a replacement for common materials in the field of electrical wiring.


Nanotubes, Carbon/chemistry , Electric Conductivity , Nanotechnology/methods
8.
Molecules ; 25(5)2020 Feb 27.
Article En | MEDLINE | ID: mdl-32120977

Downsizing well-established materials to the nanoscale is a key route to novel functionalities, in particular if different functionalities are merged in hybrid nanomaterials. Hybrid carbon-based hierarchical nanostructures are particularly promising for electrochemical energy storage since they combine benefits of nanosize effects, enhanced electrical conductivity and integrity of bulk materials. We show that endohedral multiwalled carbon nanotubes (CNT) encapsulating high-capacity (here: conversion and alloying) electrode materials have a high potential for use in anode materials for lithium-ion batteries (LIB). There are two essential characteristics of filled CNT relevant for application in electrochemical energy storage: (1) rigid hollow cavities of the CNT provide upper limits for nanoparticles in their inner cavities which are both separated from the fillings of other CNT and protected against degradation. In particular, the CNT shells resist strong volume changes of encapsulates in response to electrochemical cycling, which in conventional conversion and alloying materials hinders application in energy storage devices. (2) Carbon mantles ensure electrical contact to the active material as they are unaffected by potential cracks of the encapsulate and form a stable conductive network in the electrode compound. Our studies confirm that encapsulates are electrochemically active and can achieve full theoretical reversible capacity. The results imply that encapsulating nanostructures inside CNT can provide a route to new high-performance nanocomposite anode materials for LIB.


Electrochemical Techniques/methods , Ions/chemistry , Lithium/chemistry , Nanotubes, Carbon/chemistry , Cobalt/chemistry , Electric Conductivity , Electric Power Supplies , Electrodes , Ferric Compounds/chemistry , Manganese Compounds/chemistry , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Nanocomposites/chemistry , Nanocomposites/ultrastructure , Nanotubes, Carbon/ultrastructure , Oxides/chemistry , Tin/chemistry
9.
Future Med Chem ; 11(16): 2205-2231, 2019 08.
Article En | MEDLINE | ID: mdl-31538523

The development of hybrid materials, which combine inorganic with organic materials, is receiving increasing attention by researchers. As a consequence of carbon nanostructures high chemical versatility, they exhibit enormous potential for new highly engineered multifunctional nanotherapeutic agents for cancer therapy. Whereas many groups are working on drug delivery systems for chemotherapy, the use of carbon nanohybrids for radiotherapy is rarely applied. Thus, nanotechnology offers a wide range of solutions to overcome the current obstacles of conventional chemo- and/or radiotherapies. Within this review, the structure and properties of carbon nanostructures (carbon nanotubes, nanographene oxide) functionalized preferentially with different types of polymers (synthetic, natural) are discussed. In short, synthesis approaches, toxicity investigations and anticancer efficacy of different carbon nanohybrids are described.


Carbon/therapeutic use , Nanomedicine/methods , Nanostructures/therapeutic use , Neoplasms/therapy , Polymers/therapeutic use , Animals , Carbon/chemistry , Humans , Nanostructures/chemistry , Nanotechnology/methods , Nanotubes, Carbon/chemistry , Polymers/chemistry
10.
Materials (Basel) ; 12(18)2019 Sep 06.
Article En | MEDLINE | ID: mdl-31500165

A hybrid system composed of multi-walled carbon nanotubes coated with chitosan was proposed as a pH-responsive carrier for the vectorization of methotrexate to lung cancer. The effective coating of the carbon nanostructure by chitosan, quantified (20% by weight) by thermogravimetric analysis, was assessed by combined scanning and transmission electron microscopy, and X-ray photoelectron spectroscopy (N1s signal), respectively. Furthermore, Raman spectroscopy was used to characterize the interaction between polysaccharide and carbon counterparts. Methotrexate was physically loaded onto the nanohybrid and the release profiles showed a pH-responsive behavior with higher and faster release in acidic (pH 5.0) vs. neutral (pH 7.4) environments. Empty nanoparticles were found to be highly biocompatible in either healthy (MRC-5) or cancerous (H1299) cells, with the nanocarrier being effective in reducing the drug toxicity on MRC-5 while enhancing the anticancer activity on H1299.

11.
Pharmaceuticals (Basel) ; 12(2)2019 May 18.
Article En | MEDLINE | ID: mdl-31109098

Selective vectorization of Cisplatin (CisPt) to Glioblastoma U87 cells was exploited by the fabrication of a hybrid nanocarrier composed of magnetic γ-Fe2O3 nanoparticles and nanographene oxide (NGO). The magnetic component, obtained by annealing magnetite Fe3O4 and characterized by XRD measurements, was combined with NGO sheets prepared via a modified Hummer's method. The morphological and thermogravimetric analysis proved the effective binding of γ-Fe2O3 nanoparticles onto NGO layers. The magnetization measured under magnetic fields up to 7 Tesla at room temperature revealed superparamagnetic-like behavior with a maximum value of MS = 15 emu/g and coercivity HC ≈ 0 Oe within experimental error. The nanohybrid was found to possess high affinity towards CisPt, and a rather slow fractional release profile of 80% after 250 h. Negligible toxicity was observed for empty nanoparticles, while the retainment of CisPt anticancer activity upon loading into the carrier was observed, together with the possibility to spatially control the drug delivery at a target site.

12.
Toxicol In Vitro ; 60: 12-18, 2019 Oct.
Article En | MEDLINE | ID: mdl-30910522

The cytotoxicity of two different types of Multi-walled Carbon Nanotubes (MWCNTs) in A549 lung epithelial cells and HepG2 hepatocytes was investigated. One MWCNT still contained iron that was used as a catalyst during production, while the other one had all iron removed in a post-production heat treatment resulting in significantly fewer surface defects. The WST-8 assay was applied to test cell viability. To check the integrity of the cell membrane, we performed the lactate dehydrogenases assay (LDH) and measured the cellular production of reactive oxygen species (ROS). Finally, to examine cell proliferation, we conducted a cell cycle analysis. The results showed a dose- and time-dependent decrease in cell viability for both MWCNTs in both cell types. Moreover, a dose- and time-dependent increase in LDH leakage was detected, thereby indicating a decreased membrane integrity. The production of ROS was significantly increased in the case of the heat-treated MWCNTs. The heat-treated MWCNTs showed significantly stronger adverse effects when compared to the non-treated MWCNTs. Additionally, the heat-treated MWCNTs induced a dose-dependent cell cycle arrest in A549 cells. Both MWCNTs induced a significant cytotoxicity, whereby the heat treatment, leading to a decrease in surface defects, further increased the indicated adverse effects.


Nanotubes, Carbon/toxicity , A549 Cells , Cell Cycle/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Hep G2 Cells , Humans , L-Lactate Dehydrogenase/metabolism , Nanotubes, Carbon/chemistry , Reactive Oxygen Species/metabolism , Surface Properties
13.
Pharmaceutics ; 11(1)2018 Dec 22.
Article En | MEDLINE | ID: mdl-30583524

With the aim to obtain a site-specific doxorubicin (DOX) delivery in neuroblastoma SH-SY5Y cells, we designed an hybrid nanocarrier combining graphene oxide (GO) and magnetic iron oxide nanoparticles (MNPs), acting as core elements, and a curcumin⁻human serum albumin conjugate as functional coating. The nanohybrid, synthesized by redox reaction between the MNPs@GO system and albumin bioconjugate, consisted of MNPs@GO nanosheets homogeneously coated by the bioconjugate as verified by SEM investigations. Drug release experiments showed a pH-responsive behavior with higher release amounts in acidic (45% at pH 5.0) vs. neutral (28% at pH 7.4) environments. Cell internalization studies proved the presence of nanohybrid inside SH-SY5Y cytoplasm. The improved efficacy obtained in viability assays is given by the synergy of functional coating and MNPs constituting the nanohybrids: while curcumin moieties were able to keep low DOX cytotoxicity levels (at concentrations of 0.44⁻0.88 µM), the presence of MNPs allowed remote actuation on the nanohybrid by a magnetic field, increasing the dose delivered at the target site.

14.
Nanoscale ; 10(40): 19014-19022, 2018 Oct 18.
Article En | MEDLINE | ID: mdl-30265265

The 2D layered honeycomb magnet α-ruthenium(iii) chloride (α-RuCl3) is a promising candidate to realize a Kitaev spin model. As alteration of physical properties on the nanoscale is additionally intended, new synthesis approaches to obtain phase pure α-RuCl3 nanocrystals have been audited. Thermodynamic simulations of occurring gas phase equilibria were performed and optimization of synthesis conditions was achieved based on calculation results. Crystal growth succeeded via chemical vapor transport (CVT) in a temperature gradient of 973 K to 773 K on YSZ substrates. Single crystal sheets of high crystallinity with heights ≤30 nm were obtained via pure CVT. The crystal properties were characterized by means of optical and electron microscopy, AFM, SAED, micro-Raman and XPS proving their composition, morphology, crystallinity and phase-purity. A highlight of our study is the successful individualization of nanocrystals and the delamination of nanosheets on YSZ substrates down to the monolayer limit (≤1 nm) which was realized by means of substrate exfoliation and ultrasonication in a very reproducible way.

15.
Nanomaterials (Basel) ; 8(8)2018 Jul 28.
Article En | MEDLINE | ID: mdl-30060566

In the present work, different synthesis procedures have been demonstrated to fill carbon nanotubes (CNTs) with Fe1-xNix alloy nanoparticles (x = 0.33, 0.5). CNTs act as templates for the encapsulation of magnetic nanoparticles, and provide a protective shield against oxidation as well as prevent nanoparticles agglomeration. By variation of the reaction parameters, the purity of the samples, degree of filling, the composition and size of filling nanoparticles have been tailored and therefore the magnetic properties. The samples were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Bright-field (BF) TEM tomography, X-ray powder diffraction, superconducting quantum interference device (SQUID) and thermogravimetric analysis (TGA). The Fe1-xNix-filled CNTs show a huge enhancement in the coercive fields compared to the corresponding bulk materials, which make them excellent candidates for several applications such as magnetic storage devices.

16.
Beilstein J Nanotechnol ; 9: 1024-1034, 2018.
Article En | MEDLINE | ID: mdl-29719754

In the present work, we demonstrate different synthesis procedures for filling carbon nanotubes (CNTs) with equimolar binary nanoparticles of the type Fe-Co. The CNTs act as templates for the encapsulation of magnetic nanoparticles and provide a protective shield against oxidation as well as prevent nanoparticle agglomeration. By variation of the reaction parameters, we were able to tailor the sample purity, degree of filling, the composition and size of the filling particles, and therefore, the magnetic properties. The samples were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), superconducting quantum interference device (SQUID) and thermogravimetric analysis (TGA). The Fe-Co-filled CNTs show significant enhancement in the coercive field as compared to the corresponding bulk material, which make them excellent candidates for several applications such as magnetic storage devices.

17.
Int J Pharm ; 546(1-2): 50-60, 2018 Jul 30.
Article En | MEDLINE | ID: mdl-29758346

A free radical polymerization method was adopted for the fabrication of hybrid hydrogel films based on acrylamide and polyethylene glycol dimethacrylate as plasticizing and crosslinking agents, respectively, to be employed as smart skin bandages. Electro-sensitivity, biocompatibility and proteolytic properties were conferred to the final polymer networks by introducing graphene oxide (0.5% w/w), gelatin or trypsin (10% w/w) in the polymerization feed. The physical chemical and mechanical characterization of hybrid materials was performed by means of determination of protein content, Raman spectroscopy, thermogravimetric analysis and measurement of tensile strength. The evaluation of both water affinity and curcumin release profiles (analyzed by suitable mathematical modelling) upon application of an external electric stimulation in the 0-48 voltage range, confirmed the possibility to modulate the release kinetics. Proper proteolytic tests showed that the trypsin enzymatic activity was retained by 80% upon immobilization. Moreover, for all samples, we observed a viability higher than 94% in normal human fibroblast cells (MRC-5), while a reduction of methicillin-resistant Staphylococcus aureus CFU mL-1 (90%) was obtained with curcumin loaded samples.


Bandages , Gelatin/administration & dosage , Graphite/administration & dosage , Hydrogels/administration & dosage , Oxides/administration & dosage , Trypsin/administration & dosage , Acrylamide/administration & dosage , Acrylamide/chemistry , Cell Line , Cell Survival/drug effects , Curcumin/administration & dosage , Curcumin/chemistry , Drug Liberation , Fibroblasts/drug effects , Gelatin/chemistry , Graphite/chemistry , Humans , Hydrogels/chemistry , Methacrylates/administration & dosage , Methacrylates/chemistry , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/growth & development , Oxides/chemistry , Polyethylene Glycols/administration & dosage , Polyethylene Glycols/chemistry , Polymerization , Spectrum Analysis, Raman , Tensile Strength , Thermogravimetry , Trypsin/chemistry
18.
Eur J Pharm Biopharm ; 122: 176-185, 2018 Jan.
Article En | MEDLINE | ID: mdl-29129733

Hybrid nanocarrier consisting in nanographene oxide coated by a dextran-catechin conjugate was proposed in the efforts to find more efficient Neuroblastoma treatment with Doxorubicin chemotherapy. The dextran-catechin conjugate was prepared by immobilized laccase catalysis and its peculiar reducing ability exploited for the synthesis of the hybrid carrier. Raman spectra and DSC thermograms were recorded to check the physicochemical properties of the nanohybrid, while DLS measurements, SEM, TEM, and AFM microscopy allowed the determination of its morphological and dimensional features. A pH dependent Doxorubicin release was observed, with 30 and 75% doxorubicin released at pH 7.4 and 5.0, respectively. Viability assays on parental BE(2)C and resistant BE(2)C/ADR cell lines proved that the high anticancer activity of dextran-catechin conjugate (IC50 19.9 ±â€¯0.6 and 18.4 ±â€¯0.7 µg mL-1) was retained upon formation of the nanohybrids (IC50 24.8 ±â€¯0.7 and 22.9 ±â€¯1 µg mL-1). Combination therapy showed a synergistic activity between doxorubicin and either bioconjugate or nanocarrier on BE(2)C. More interestingly, on BE(2)C/ADR we recorded both the reversion of doxorubicin resistance mechanism as a consequence of decreased P-gp expression (Western Blot analysis) and a synergistic effect on cell viability, confirming the proposed nanohybrid as a very promising starting point for further research in neuroblastoma treatment.


Catechin/chemistry , Dextrans/chemistry , Doxorubicin/pharmacology , Drug Carriers/chemistry , Drug Resistance, Neoplasm/drug effects , Nanoparticles/chemistry , Neuroblastoma/drug therapy , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Doxorubicin/chemistry , Drug Synergism , Humans
19.
Sci Rep ; 7(1): 13625, 2017 10 19.
Article En | MEDLINE | ID: mdl-29051613

The ferrimagnetic and high-capacity electrode material Mn3O4 is encapsulated inside multi-walled carbon nanotubes (CNT). We show that the rigid hollow cavities of the CNT enforce size-controlled nanoparticles which are electrochemically active inside the CNT. The ferrimagnetic Mn3O4 filling is switched by electrochemical conversion reaction to antiferromagnetic MnO. The conversion reaction is further exploited for electrochemical energy storage. Our studies confirm that the theoretical reversible capacity of the Mn3O4 filling is fully accessible. Upon reversible cycling, the Mn3O4@CNT nanocomposite reaches a maximum discharge capacity of 461 mA h g-1 at 100 mA g-1 with a capacity retention of 90% after 50 cycles. We attribute the good cycling stability to the hybrid nature of the nanocomposite: (1) Carbon encasements ensure electrical contact to the active material by forming a stable conductive network which is unaffected by potential cracks of the encapsulate. (2) The CNT shells resist strong volume changes of the encapsulate in response to electrochemical cycling, which in conventional (i.e., non-nanocomposite) Mn3O4 hinders the application in energy storage devices. Our results demonstrate that Mn3O4 nanostructures can be successfully grown inside CNT and the resulting nanocomposite can be reversibly converted and exploited for lithium-ion batteries.

20.
Sci Rep ; 7(1): 8881, 2017 08 21.
Article En | MEDLINE | ID: mdl-28827554

The investigation of properties of nanoparticles is an important task to pave the way for progress and new applications in many fields of research like biotechnology, medicine and magnetic storage techniques. The study of nanoparticles with ever decreasing size is a challenge for commonly employed methods and techniques. It requires increasingly complex measurement setups, often low temperatures and a size reduction of the respective sensors to achieve the necessary sensitivity and resolution. Here, we present results on how magnetic properties of individual nanoparticles can be measured at room temperature and with a conventional scanning force microscopy setup combined with a co-resonant cantilever magnetometry approach. We investigate individual Co2FeGa Heusler nanoparticles with diameters of the order of 35 nm encapsulated in carbon nanotubes. We observed, for the first time, magnetic switching of these nanoparticles in an external magnetic field by simple laser deflection detection. Furthermore, we were able to deduce magnetic properties of these nanoparticles which are in good agreement with previous results obtained with large nanoparticle ensembles in other experiments. In order to do this, we expand the analytical description of the frequency shift signal in cantilever magnetometry to a more general formulation, taking unaligned sensor oscillation directions with respect to the magnetic field into account.

...