Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 11: 1250348, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38026846

RESUMEN

Glycocalyx (GCX) is a carbohydrate-rich structure that coats the surface of endothelial cells (ECs) and lines the blood vessel lumen. Mechanical perturbations in the vascular environment, such as blood vessel stiffness, can be transduced and sent to ECs through mechanosensors such as GCX. Adverse stiffness alters GCX-mediated mechanotransduction and leads to EC dysfunction and eventually atherosclerotic cardiovascular diseases. To understand GCX-regulated mechanotransduction events, an in vitro model emulating in vivo vessel conditions is needed. To this end, we investigated the impact of matrix chemical and mechanical properties on GCX expression via fabricating a tunable non-swelling matrix based on the collagen-derived polypeptide, gelatin. To study the effect of matrix composition, we conducted a comparative analysis of GCX expression using different concentrations (60-25,000 µg/mL) of gelatin and gelatin methacrylate (GelMA) in comparison to fibronectin (60 µg/mL), a standard coating material for GCX-related studies. Using immunocytochemistry analysis, we showed for the first time that different substrate compositions and concentrations altered the overall GCX expression on human umbilical vein ECs (HUVECs). Subsequently, GelMA hydrogels were fabricated with stiffnesses of 2.5 and 5 kPa, representing healthy vessel tissues, and 10 kPa, corresponding to diseased vessel tissues. Immunocytochemistry analysis showed that on hydrogels with different levels of stiffness, the GCX expression in HUVECs remained unchanged, while its major polysaccharide components exhibited dysregulation in distinct patterns. For example, there was a significant decrease in heparan sulfate expression on pathological substrates (10 kPa), while sialic acid expression increased with increased matrix stiffness. This study suggests the specific mechanisms through which GCX may influence ECs in modulating barrier function, immune cell adhesion, and mechanotransduction function under distinct chemical and mechanical conditions of both healthy and diseased substrates.

2.
Bioact Mater ; 29: 279-295, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37600932

RESUMEN

Hypoxia is a major factor shaping the immune landscape, and several cancer models have been developed to emulate hypoxic tumors. However, to date, they still have several limitations, such as the lack of reproducibility, inadequate biophysical cues, limited immune cell infiltration, and poor oxygen (O2) control, leading to non-pathophysiological tumor responses. Therefore, it is essential to develop better cancer models that mimic key features of the tumor extracellular matrix and recreate tumor-associated hypoxia while allowing cell infiltration and cancer-immune cell interactions. Herein, hypoxia-inducing cryogels (HICs) have been engineered using hyaluronic acid (HA) to fabricate three-dimensional microtissues and model a hypoxic tumor microenvironment. Specifically, tumor cell-laden HICs have been designed to deplete O2 locally and induce long-standing hypoxia. HICs promoted changes in hypoxia-responsive gene expression and phenotype, a metabolic adaptation to anaerobic glycolysis, and chemotherapy resistance. Additionally, HIC-supported tumor models induced dendritic cell (DC) inhibition, revealing a phenotypic change in the plasmacytoid DC (pDC) subset and an impaired conventional DC (cDC) response in hypoxia. Lastly, our HIC-based melanoma model induced CD8+ T cell inhibition, a condition associated with the downregulation of pro-inflammatory cytokine secretion, increased expression of immunomodulatory factors, and decreased degranulation and cytotoxic capacity of T cells. Overall, these data suggest that HICs can be used as a tool to model solid-like tumor microenvironments and has great potential to deepen our understanding of cancer-immune cell relationship in low O2 conditions and may pave the way for developing more effective therapies.

3.
bioRxiv ; 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36711715

RESUMEN

Hypoxia, an important feature of solid tumors, is a major factor shaping the immune landscape, and several cancer models have been developed to emulate hypoxic tumors. However, to date, they still have several limitations, such as the lack of reproducibility, inadequate biophysical cues, limited immune cell infiltration, and poor oxygen (O 2 ) control, leading to non-pathophysiological tumor responses. As a result, it is essential to develop new and improved cancer models that mimic key features of the tumor extracellular matrix and recreate tumor-associated hypoxia while allowing cell infiltration and cancer-immune cell interactions. Herein, hypoxia-inducing cryogels (HICs) have been engineered using hyaluronic acid (HA) as macroporous scaffolds to fabricate three-dimensional microtissues and model a hypoxic tumor microenvironment. Specifically, tumor cell-laden HICs have been designed to deplete O 2 locally and induce long-standing hypoxia. This state of low oxygen tension, leading to HIF-1α stabilization in tumor cells, resulted in changes in hypoxia-responsive gene expression and phenotype, a metabolic adaptation to anaerobic glycolysis, and chemotherapy resistance. Additionally, HIC-supported tumor models induced dendritic cell (DC) inhibition, revealing a phenotypic change in plasmacytoid B220 + DC (pDC) subset and an impaired conventional B220 - DC (cDC) response in hypoxia. Lastly, our HIC-based melanoma model induced CD8+ T cell inhibition, a condition associated with the downregulation of pro-inflammatory cytokine secretion, increased expression of immunomodulatory factors, and decreased degranulation and cytotoxic capacity of T cells. Overall, these data suggest that HICs can be used as a tool to model solid-like tumor microenvironments and identify a phenotypic transition from cDC to pDC in hypoxia and the key contribution of HA in retaining cDC phenotype and inducing their hypoxia-mediated immunosuppression. This technology has great potential to deepen our understanding of the complex relationships between cancer and immune cells in low O 2 conditions and may pave the way for developing more effective therapies.

4.
Am J Physiol Cell Physiol ; 324(2): C488-C504, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36440856

RESUMEN

Endothelium health is essential to the regulation of physiological vascular functions. Because of the critical capability of endothelial cells (ECs) to sense and transduce chemical and mechanical signals in the local vascular environment, their dysfunction is associated with a vast variety of vascular diseases and injuries, especially atherosclerosis and subsequent cardiovascular diseases. This review describes the mechanotransduction events that are mediated through ECs, the EC subcellular components involved, and the pathways reported to be potentially involved. Up-to-date research efforts involving in vivo animal models and in vitro biomimetic models are also discussed, including their advantages and drawbacks, with recommendations on future modeling approaches to aid the development of novel therapies targeting atherosclerosis and related cardiovascular diseases.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Animales , Células Endoteliales/metabolismo , Mecanotransducción Celular/fisiología , Enfermedades Cardiovasculares/metabolismo , Endotelio Vascular/metabolismo , Aterosclerosis/metabolismo , Estrés Mecánico
5.
ACS Appl Bio Mater ; 5(5): 2176-2184, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35412793

RESUMEN

Stem cells are a vital component of regenerative medicine therapies, however, only a fraction of stem cells delivered to the central nervous system following injury survive the inflammatory environment. Previously, we showed that subcutaneous preconditioning of neural stem cell (NSC) embedded hydrogels for 28 days improved spinal cord injury (SCI) functional outcomes over controls. Here, we investigated the mechanism of subcutaneous preconditioning of NSC-embedded hydrogels, with and without the known neurogenic cue, interferon gamma (IFN-γ), for 3, 14, or 28 days to refine and identify subcutaneous preconditioning conditions by measurement of neurogenic markers and cytokines. Studying the preconditioning mechanism, we found that subcutaneous foreign body response (FBR) associated cytokines infiltrated the scaffold in groups with and without NSCs, with time point effects. A pro-inflammatory environment with upregulated interleukin (IL)-6, IL-10, macrophage inflammatory protein (MIP)-1, MIP-2, IFN-γ-inducible protein 10 (IP-10), tumor necrosis factor-α (TNF-α), and IL-12p70 was observed on day 3. By 14 and 28 days, there was an increase in pro-regenerative cytokines (IL-13, IL-4) along with pro-inflammatory markers IL-1ß, IP-10, and RANTES (regulated on activation, normal T cell expressed, and secreted) potentially part of the mechanism that had an increased functional outcome in SCI. Coinciding with changes in cytokines, the macrophage population increased over time from 3 to 28 days, whereas neutrophils peaked at 3 days with a significant decrease at later time points. Expression of the neuronal marker ßIII tubulin in differentiating NSCs was supported at 3 days in the presence of soluble and immobilized IFN-γ and at 14 days by immobilized IFN-γ only, but it was greatly attenuated in all conditions at 28 days, partially because of dilution via host cell infiltration. We conclude that subcutaneously incubating NSC seeded scaffolds for 3 or 14 days could act as host specific preconditioning through exposure to FBR while retaining ßIII tubulin expression of NSCs to further improve the SCI functional outcome observed with 28 day subcutaneous incubation.


Asunto(s)
Células-Madre Neurales , Traumatismos de la Médula Espinal , Quimiocina CXCL10 , Citocinas/metabolismo , Humanos , Hidrogeles , Interferón gamma/metabolismo , Interleucina-6 , Proteínas Inflamatorias de Macrófagos , Traumatismos de la Médula Espinal/terapia , Tubulina (Proteína)
6.
Mater Sci Eng C Mater Biol Appl ; 110: 110656, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32204084

RESUMEN

Strategies using neural stem cells (NSCs) to aid regeneration following spinal cord injury (SCI) show much promise, but challenges remain regarding implementation and efficacy. In this work, we explored the use of an NSC-seeded scaffold consisting of covalently immobilized interferon-γ and rat NSCs within a hydrogel matrix (methacrylamide chitosan). We placed the scaffolds within the subcutaneous environment of rats, allowing them to incubate for 4 weeks in order to prime them for regeneration prior to being transplanted into a right lateral hemisection SCI model in the same animal. We found that subcutaneous priming reduced the lineage commitment of encapsulated NSCs, as observed by increased nestin expression and decreased NeuN expression. When combined with intracellular σ peptide administration (which reduces inhibition from the glial scar), subcutaneous maturation improved functional outcomes, which were assessed by BBB score and quantitative gait parameters (fore and hind limb duty factor imbalance, right and left paw placement accuracy). Although we did not observe any direct reconnection of the transplanted cells with the host tissue, we did observe neurofilament fibers extending from the host tissue into the scaffold. Importantly, the mechanism for improved functional outcomes is likely an increase in trophic support from subcutaneously maturing the scaffold, which is enhanced by the administration of ISP.


Asunto(s)
Quitosano/química , Recuperación de la Función , Traumatismos de la Médula Espinal/fisiopatología , Andamios del Tejido/química , Acrilamidas/química , Animales , Antígenos Nucleares/metabolismo , Femenino , Filamentos Intermedios/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Nestina/metabolismo , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Péptidos/farmacología , Ratas Endogámicas F344 , Recuperación de la Función/efectos de los fármacos , Tejido Subcutáneo/efectos de los fármacos
7.
Artículo en Inglés | MEDLINE | ID: mdl-32076364

RESUMEN

Strategies using neural stem cells (NSCs) to aid regeneration following spinal cord injury (SCI) show much promise, but challenges remain regarding implementation and efficacy. In this work, we explored the use of an NSC-seeded scaffold consisting of covalently immobilized interferon-γ and rat NSCs within a hydrogel matrix (methacrylamide chitosan). We placed the scaffolds within the subcutaneous environment of rats, allowing them to incubate for 4 weeks in order to prime them for regeneration prior to being transplanted into a right lateral hemisection SCI model in the same animal. We found that subcutaneous priming reduced the lineage commitment of encapsulated NSCs, as observed by increased nestin expression and decreased NeuN expression. When combined with intracellular σ peptide administration (which reduces inhibition from the glial scar), subcutaneous maturation improved functional outcomes, which were assessed by BBB score and quantitative gait parameters (fore and hind limb duty factor imbalance, right and left paw placement accuracy). Although we did not observe any direct reconnection of the transplanted cells with the host tissue, we did observe neurofilament fibers extending from the host tissue into the scaffold. Importantly, the mechanism for improved functional outcomes is likely an increase in trophic support from subcutaneously maturing the scaffold, which is enhanced by the administration of ISP.


Asunto(s)
Quitosano/química , Células-Madre Neurales/citología , Traumatismos de la Médula Espinal/terapia , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Marcha/fisiología , Hidrogeles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA