Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Animals (Basel) ; 11(2)2021 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-33573331

RESUMEN

In a previous work, we observed that heat-stressed goats suffer reductions in milk yield and its contents of fat and protein. Supplementation with soybean oil (SBO) may be a useful strategy to enhance milk quality. In total, eight multiparous Murciano-Granadina dairy goats (42.8 ± 1.3 kg body weight; 99 ± 1 days of lactation) were used in a replicated 4 × 4 Latin square design with four periods; 21 d each (14 d adaptation, 5 d for measurements and 2 d transition between periods). Goats were allocated to one of four treatments in a 2 × 2 factorial arrangement. Factors were no oil (CON) or 4% of soybean oil (SBO), and controlled thermal neutral (TN; 15 to 20 °C) or heat stress (HS; 12 h/d at 37 °C and 12 h/d at 30 °C) conditions. This resulted in four treatment combinations: TN-CON, TN-SBO, HS-CON, and HS-SBO. Compared to TN, HS goats experienced lower (p < 0.05) feed intake, body weight, N retention, milk yield, and milk protein and lactose contents. However, goats in HS conditions had greater (p < 0.05) digestibility coefficients (+5.1, +5.2, +4.6, +7.0, and +8.9 points for dry matter, organic matter, crude protein, neutral detergent fiber, and acid detergent fiber, respectively) than TN goats. The response to SBO had the same magnitude in TN and HS conditions. Supplementation with SBO had no effects on feed intake, milk yield, or milk protein content. However, SBO supplementation increased (p < 0.05) blood non-esterified fatty acids by 50%, milk fat by 29%, and conjugated linoleic acid by 360%. In conclusion, feeding 4% SBO to dairy goats was a useful strategy to increase milk fat and conjugated linoleic acid without any negative effects on intake, milk yield, or milk protein content. These beneficial effects were obtained regardless goats were in TN or HS conditions.

2.
Animals (Basel) ; 10(12)2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33371268

RESUMEN

Heat-stressed dairy animals increase their reliance on glucose. This elevated glucose demand is partially met by increasing the conversion of glucogenic amino acids (AA) in the liver. Propylene glycol (PG) is a glucogenic precursor and was not tested in dairy goats under thermoneutral (TN) and heat stress (HS) conditions simultaneously. We hypothesize that if HS-goats are fed with PG, they would get more glucose and consequently spare more glucogenic AA for milk protein synthesis rather than gluconeogenesis. Eight multiparous dairy goats (40.8 ± 1.1 kg body weight; 84 ± 1 days in milk) were used in a replicated 4 × 4 Latin square design of 4 periods; 21 d each (14 d adaptation, 5 d for measurements, and 2 d of transition). Goats were allocated to one of 4 treatments in a 2 × 2 factorial arrangement. Factors were control (CO) without PG or 5% of PG, and thermoneutral (TN; 15 to 20 °C) or heat stress (HS; 12 h/d at 37 °C and 12 h/d at 30 °C) conditions. Feed intake, rectal temperature, respiratory rate, milk yield, milk composition, and blood metabolites were measured. Compared to TN, HS goats had lower (p < 0.01) feed intake (-34%), fat-corrected milk (-15%), and milk fat (-15%). Heat-stressed goats also tended (p < 0.10) to produce milk with lower protein (-11%) and lactose (-4%) contents. Propylene glycol increased blood glucose (+7%; p < 0.05), blood insulin (+37%; p < 0.10), and body weight gain (+68%; p < 0.05), but decreased feed intake (-9%; p < 0.10) and milk fat content (-23%; p < 0.01). Furthermore, blood non-esterified fatty acids (-49%) and ß-hydroxybutyrate (-32%) decreased (p < 0.05) by PG. In conclusion, supplementation of heat-stressed dairy goats with propylene glycol caused milk fat depression syndrome, but reduced body weight loss that is typically observed under HS conditions. Supplementation with lower doses of PG would avoid the reduced feed intake and milk fat depression, but this should be tested.

3.
PLoS One ; 14(2): e0202457, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30735497

RESUMEN

The aim of the study is to identify the candidate biomarkers of heat stress (HS) in the urine of lactating dairy goats through the application of proton Nuclear Magnetic Resonance (1H NMR)-based metabolomic analysis. Dairy does (n = 16) in mid-lactation were submitted to thermal neutral (TN; indoors; 15 to 20°C; 40 to 45% humidity) or HS (climatic chamber; 37°C day, 30°C night; 40% humidity) conditions according to a crossover design (2 periods of 21 days). Thermophysiological traits and lactational performances were recorded and milk composition analyzed during each period. Urine samples were collected at day 15 of each period for 1H NMR spectroscopy analysis. Principal component analysis (PCA) and partial least square-discriminant analysis (PLS-DA) assessment with cross validation were used to identify the goat urinary metabolome from the Human Metabolome Data Base. HS increased rectal temperature (1.2°C), respiratory rate (3.5-fold) and water intake (74%), but decreased feed intake (35%) and body weight (5%) of the lactating does. No differences were detected in milk yield, but HS decreased the milk contents of fat (9%), protein (16%) and lactose (5%). Metabolomics allowed separating TN and HS urinary clusters by PLS-DA. Most discriminating metabolites were hippurate and other phenylalanine (Phe) derivative compounds, which increased in HS vs. TN does. The greater excretion of these gut-derived toxic compounds indicated that HS induced a harmful gastrointestinal microbiota overgrowth, which should have sequestered aromatic amino acids for their metabolism and decreased the synthesis of neurotransmitters and thyroid hormones, with a negative impact on milk yield and composition. In conclusion, HS markedly changed the thermophysiological traits and lactational performances of dairy goats, which were translated into their urinary metabolomic profile through the presence of gut-derived toxic compounds. Hippurate and other Phe-derivative compounds are suggested as urinary biomarkers to detect heat-stressed dairy animals in practice.


Asunto(s)
Cabras/metabolismo , Respuesta al Choque Térmico/fisiología , Lactancia/metabolismo , Animales , Biomarcadores/metabolismo , Peso Corporal , Femenino , Microbioma Gastrointestinal/fisiología , Cabras/fisiología , Trastornos de Estrés por Calor/metabolismo , Calor , Humedad , Metabolómica/métodos , Leche/metabolismo , Proteínas de la Leche/metabolismo , Estrés Fisiológico/fisiología
4.
J Dairy Res ; 85(4): 423-430, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30236165

RESUMEN

High temperature is a major stress that negatively affects welfare, health, and productivity of dairy animals. Heat-stressed animals are more prone to disease, suggesting that their immunity is hindered. Although productive and physiologic responses of dairy animals to heat stress are well known, there is still limited information on the response at the transcriptome level. Our objective was to evaluate the changes in performance and blood transcriptomics of dairy goats under heat stress. Eight multiparous Murciano-Granadina dairy goats in mid-lactation were assigned to 1 of 2 climatic treatments for 35 d. Treatments and temperature-humidity index (THI) were: (1) thermal neutral (TN: n = 4; 15-20 °C, 40-45%, THI = 59-65), and (2) heat stress (HS: n = 4; 12 h at 37 °C-40%, THI = 86; 12 h at 30 °C-40%, THI = 77). Rectal temperature, respiratory rate, feed intake and milk yield were recorded daily. Additionally, milk composition was evaluated weekly. Blood samples were collected at d 35 and RNA was extracted for microarray analyses (Affymetrix GeneChip Bovine Genome Array). Differences in rectal temperature and respiratory rate between HS and TN goats were maximal during the first 3 d of the experiment, reduced thereafter, but remained significant throughout the 35-d experimental period. Heat stress reduced feed intake, milk yield, milk protein and milk fat contents by 29, 8, 12, and 13%, respectively. Microarray analysis of blood revealed that 55 genes were up-regulated, whereas 88 were down-regulated by HS. Bioinformatics analysis using the Dynamic Impact Approach revealed that 31 biological pathways were impacted by HS. Pathways associated with leukocyte transendothelial migration, cell adhesion, hematopoietic cell lineage, calcium signaling, and PPAR signaling were negatively impacted by HS, whereas nucleotide metabolism was activated. In conclusion, heat stress not only negatively affected milk production in dairy goats, but also resulted in alterations in the functionality of immune cells, which would make the immune system of heat-stressed goats less capable of fending-off diseases.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Cabras/fisiología , Calor , Lactancia/fisiología , Estrés Fisiológico/fisiología , Transcriptoma , Animales , Proliferación Celular , Biología Computacional , Femenino , Cabras/sangre , Leucocitos/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...