Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Parasitol ; 67(1): 298-308, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34398379

RESUMEN

BACKGROUND: Malaria is a parasitic lethal disease caused by Plasmodium protozoa. The resistance and drugs' side effects have led to numerous researches for alternative suitable drugs with better efficiency and lower toxicity PURPOSE: In the present study, we investigated in vivo antimalarial effects of G2 linear dendrimer-based nano-chloroquine. METHODS: After the preparation of nano dendrimer G2, chloroquine loading was done. Determine the characterization of particles were specified by DLS, SLS and SEM. The LC-MS and FTIR were used for verifying the nano dendrimer G2 and the loading of chloroquine into the compound. The Solubility N-chloroquine and measurement of drug release rate were done. Antiplasmodial activity of N-chloroquine on BALB/c mice was performed by the microscope and enzymatic methods. At the end, In vivo toxicity of N-chloroquine on tissues was assayed. The RBC morphology and enzyme levels were identified. RESULTS: The results showed the synthesized N-chloroquine had suitable size and solubility. Highest inhibitory effect on Plasmodium parasitic growth was observed at 16 mg/kg dose of N-chloroquine, which eliminated 95% of the parasites (p > 0.05). ED50 is observed at 7.7 mg/kg of N-chloroquine dose. Biochemical findings showed the synthesized N-chloroquine was safer than chloroquine. The N-chloroquine no adverse effects were observed in examined tissues. CONCLUSION: Due to the better effect of the synthesized N-chloroquine on Plasmodium berghei in mice compared to chloroquine, this nanoparticle can be considered as an effective anti-plasmodium compound while more comprehensive research is recommended.


Asunto(s)
Antimaláricos , Plasmodium berghei , Animales , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Cloroquina/farmacología , Cloroquina/uso terapéutico , Ratones , Ratones Endogámicos BALB C , Plasmodium falciparum
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...