Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Imeta ; 3(2): e166, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38882497

RESUMEN

Asthenozoospermia (AZS) is a prevalent contributor to male infertility, characterized by a substantial decline in sperm motility. In recent years, large-scale studies have explored the interplay between the male reproductive system's microecology and its implications for reproductive health. Nevertheless, the direct association between seminal microecology and male infertility pathogenesis remains inconclusive. This study used 16S rDNA sequencing and multi-omics analysis to conduct a comprehensive investigation of the seminal microbial community and metabolites in AZS patients. Patients were categorized into four distinct groups: Normal, mild AZS (AZS-I), moderate AZS (AZS-II), and severe AZS (AZS-III). Microbiome differential abundance analysis revealed significant differences in microbial composition and metabolite profiles within the seminal plasma of these groups. Subsequently, patients were classified into a control group (Normal and AZS-I) and an AZS group (AZS-II and AZS-III). Correlation and cross-reference analyses identified distinct microbial genera and metabolites. Notably, the AZS group exhibited a reduced abundance of bacterial genera such as Pseudomonas, Serratia, and Methylobacterium-Methylorubrum in seminal plasma, positively correlating with core differential metabolite (hexadecanamide). Conversely, the AZS group displayed an increased abundance of bacterial genera such as Uruburuella, Vibrio, and Pseudoalteromonas, with a negative correlation with core differential metabolite (hexadecanamide). In vitro and in vivo experiments validated that hexadecanamide significantly enhanced sperm motility. Using predictive metabolite-targeting gene analysis and single-cell transcriptome sequencing, we profiled the gene expression of candidate target genes PAOX and CA2. Protein immunoblotting techniques validated the upregulation protein levels of PAOX and CA2 in sperm samples after hexadecanamide treatment, enhancing sperm motility. In conclusion, this study uncovered a significant correlation between six microbial genera in seminal plasma and the content of the metabolite hexadecanamide, which is related to AZS. Hexadecanamide notably enhances sperm motility, suggesting its potential integration into clinical strategies for managing AZS, providing a foundational framework for diagnostic and therapeutic advancements.

2.
Theranostics ; 14(6): 2622-2636, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646657

RESUMEN

Rationale: In recent years, nicotinamide adenine dinucleotide (NAD+) precursors (Npre) have been widely employed to ameliorate female reproductive problems in both humans and animal models. However, whether and how Npre plays a role in the male reproductive disorder has not been fully clarified. Methods: In the present study, a busulfan-induced non-obstructive azoospermic mouse model was used, and Npre was administered for five weeks following the drug injection, with the objective of reinstating spermatogenesis and fertility. Initially, we assessed the NAD+ level, germ cell types, semen parameters and sperm fertilization capability. Subsequently, testis tissues were examined through RNA sequencing analysis, ELISA, H&E, immunofluorescence, quantitative real-time PCR, and Western blotting techniques. Results: The results indicated that Npre restored normal level of NAD+ in blood and significantly alleviated the deleterious effects of busulfan (BU) on spermatogenesis, thereby partially reestablishing fertilization capacity. Transcriptome analysis, along with recovery of testicular Fe2+, GSH, NADPH, and MDA levels, impaired by BU, and the fact that Fer-1, an inhibitor of ferroptosis, restored spermatogenesis and semen parameters close to CTRL values, supported such possibility. Interestingly, the reduction in SIRT2 protein level by the specific inhibitor AGK2 attenuated the beneficial effects of Npre on spermatogenesis and ferroptosis by affecting PGC-1α and ACLY protein levels, thus suggesting how these compounds might confer spermatogenesis protection. Conclusion: Collectively, these findings indicate that NAD+ protects spermatogenesis against ferroptosis, probably through SIRT2 dependent mechanisms. This underscores the considerable potential of Npre supplementation as a feasible strategy for preserving or restoring spermatogenesis in specific conditions of male infertility and as adjuvant therapy to preserve male fertility in cancer patients receiving sterilizing treatments.


Asunto(s)
Busulfano , Ferroptosis , NAD , Sirtuina 2 , Espermatogénesis , Animales , Busulfano/farmacología , Masculino , Espermatogénesis/efectos de los fármacos , Ratones , NAD/metabolismo , Ferroptosis/efectos de los fármacos , Sirtuina 2/metabolismo , Sirtuina 2/genética , Modelos Animales de Enfermedad , Testículo/metabolismo , Testículo/efectos de los fármacos , Azoospermia/tratamiento farmacológico , Azoospermia/metabolismo , Azoospermia/inducido químicamente
3.
Environ Pollut ; 347: 123742, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38460586

RESUMEN

Di (2-ethylhexyl) phthalate (DEHP), identified as an endocrine-disrupting chemical, is associated with reproductive toxicity. This association is particularly noteworthy in newborns with incompletely developed metabolic functions, as exposure to DEHP can induce enduring damage to the reproductive system, potentially influencing adult reproductive health. In this study, we continuously administered 40 µg/kg and 80 µg/kg DEHP to postnatal day 5 (PD5) mice for ten days to simulate low and high doses of DEHP exposure during infancy. Utilizing single-cell RNA sequencing (scRNA-seq), our analysis revealed that varying concentrations of DEHP exposure during infancy induced distinct DNA damage response characteristics in testicular Undifferentiated spermatogonia (Undiff SPG). Specifically, DNA damage triggered mitochondrial dysfunction, leading to acetyl-CoA content alterations. Subsequently, this disruption caused aberrations in histone acetylation patterns, ultimately resulting in apoptosis of Undiff SPG in the 40 µg/kg DEHP group and autophagy in the 80 µg/kg DEHP group. Furthermore, we found that DEHP exposure impacts the development and functionality of Sertoli and Leydig cells through the focal adhesion and PPAR signaling pathways, respectively. We also revealed that Leydig cells regulate the metabolic environment of Undiff SPG via Ptn-Sdc4 and Mdk-Sdc4 after DEHP exposure. Finally, our study provided pioneering evidence that disruptions in testicular homeostasis induced by DEHP exposure during infancy endure into adulthood. In summary, this study elucidates the molecular mechanisms through which DEHP exposure during infancy influences the development of testicular cell populations.


Asunto(s)
Dietilhexil Ftalato , Ácidos Ftálicos , Espermatogonias , Masculino , Ratones , Animales , Dietilhexil Ftalato/metabolismo , Histonas/metabolismo , Acetilación , Testículo/metabolismo , Homeostasis
4.
Fish Shellfish Immunol ; 146: 109425, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38316348

RESUMEN

As a series of our previous studies reported, recombinant yeast can be the oral vaccines to deliver designed protein and DNA, as well as functional shRNA, into dendritic cells (DCs) in mice for specific immune regulation. Here, we report the further optimization of oral yeast-based vaccine from two aspects (yeast characteristics and recombinant DNA constitution) to improve the effect of immune regulation. After screening four genes in negative regulation of glucan synthesis in yeast (MNN9, GUP1, PBS2 and EXG1), this research combined HDR-based genome editing technology with Cre-loxP technology to acquire 15 gene-knockout strains without drug resistance-gene to exclude biosafety risks; afterward, oral feeding experiments were performed on the mice using 15 oral recombinant yeast-based vaccines constructed by the gene-knockout strains harboring pCMV-MSTN plasmid to screen the target strain with more effective inducing mstn-specific antibody which in turn increasing weight gain effect. And subsequently based on the selected gene-knockout strain, the recombinant DNA in the oral recombinant yeast-based vaccine is optimized via a combination of protein fusion expression (OVA-MSTN) and interfering RNA technology (shRNA-IL21), comparison in terms of both weight gain effect and antibody titer revealed that the selected gene-knockout strain (GUP1ΔEXG1Δ) combined with specific recombinant DNA (pCMV-OVA-MSTN-shIL2) had a better effect of the vaccine. This study provides a useful reference to the subsequent construction of a more efficient oral recombinant yeast-based vaccine in the food and pharmaceutical industry.


Asunto(s)
ADN Recombinante , Saccharomyces cerevisiae , Ratones , Animales , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , ADN Recombinante/metabolismo , Vacunas Sintéticas , ARN Interferente Pequeño , Aumento de Peso
5.
Front Endocrinol (Lausanne) ; 14: 1222635, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37484950

RESUMEN

Introduction: In recent years, the quality of male semen has been decreasing, and the number of male infertilities caused by asthenozoospermia is increasing year by year, and the diagnosis and treatment of patients with asthenozoospermia are gradually receiving the attention of the whole society. Due to the unknown etiology and complex pathogenesis, there is no specific treatment for asthenozoospermia. Our previous study found that the administration of chestnut polysaccharide could alter the intestinal microbiota and thus improve the testicular microenvironment, and rescue the impaired spermatogenesis process by enhancing the expression of reproduction-related genes, but its exact metabolome-related repairment mechanism of chestnut polysaccharide is still unclear. Methods and results: In this study, we studied the blood metabolomic changes of busulfan-induced asthenozoospermia-model mice before and after oral administration of chestnut polysaccharide with the help of metabolome, and screened two key differential metabolites (hydrogen carbonate and palmitic acid) from the set of metabolomic changes; we then analyzed the correlation between several metabolites and between different metabolites and intestinal flora by correlation analysis, and found that palmitic acid in the blood serum of mice after oral administration of chestnut polysaccharide had different degrees of correlation with various metabolites, and palmitic acid level had a significant positive correlation with the abundance of Verrucomicrobia; finally, we verified the role of palmitic acid in rescuing the damaged spermatogenesis process by using asthenozoospermia-model mice, and screened the key target gene for palmitic acid to play the rescuing effect by integrating the analysis of multiple databases. Discussion: In conclusion, this study found that chestnut polysaccharide rescued the damaged spermatogenesis in asthenozoospermia-model mice by upregulating palmitic acid level, which will provide theoretical basis and technical support for the use of chestnut polysaccharide in the treatment of asthenozoospermia.


Asunto(s)
Astenozoospermia , Infertilidad Masculina , Humanos , Masculino , Animales , Ratones , Astenozoospermia/inducido químicamente , Astenozoospermia/tratamiento farmacológico , Astenozoospermia/genética , Ácido Palmítico , Espermatogénesis/genética , Testículo/metabolismo , Infertilidad Masculina/genética , Polisacáridos/farmacología
6.
Cell Biosci ; 13(1): 113, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37344849

RESUMEN

Acne is a chronic inflammatory skin disorder that profoundly impacts the quality of life of patients worldwide. While it is predominantly observed in adolescents, it can affect individuals across all age groups. Acne pathogenesis is believed to be a result of various endogenous and exogenous factors, but the precise mechanisms remain elusive. Recent studies suggest that dysbiosis of the skin microbiota significantly contributes to acne development. Specifically, Cutibacterium acnes, the dominant resident bacterial species implicated in acne, plays a critical role in disease progression. Various treatments, including topical benzoyl peroxide, systemic antibiotics, and photodynamic therapy, have demonstrated beneficial effects on the skin microbiota composition in acne patients. Of particular interest is the therapeutic potential of probiotics in acne, given its direct influence on the skin microbiota. This review summarizes the alterations in skin microbiota associated with acne, provides insight into its pathogenic role in acne, and emphasizes the potential of therapeutic interventions aimed at restoring microbial homeostasis for acne management.

7.
Andrology ; 10(8): 1687-1701, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36116016

RESUMEN

BACKGROUND: Human sperm concentration and motility have dropped dramatically (50%) in the past few decades, and environmental factors are involved in this decline. Long non-coding RNAs (lncRNA) have been discovered to be involved in many cellular processes including spermatogenesis. OBJECTIVE: This investigation aimed to explore the role of lncRNA8276 in murine spermatogenesis. MATERIALS AND METHODS: The expression of lncRNA8276 was modified by knockdown or overexpression in mouse testes and spermatogonial stem cells (C18-4 cell line). Sperm quality was determined in the F0 and F1 generations of mice. Furthermore, the underlying mechanisms were studied through gene expression and/or protein expression of spermatogenesis-related genes and cell junction-related genes by different methods. RESULTS: In the current investigation, we discovered that sperm lncRNA8276 was decreased by NH3 /H2 S in three generations (F0, F1, and F2) of mouse sperm. In vivo testicular knockdown of lncRNA8276 led to a decline in sperm concentration and motility in both F0 (muF0) and F1 (muF1) generations Moreover, knockdown lncRNA8276 decreased the gene and protein levels of important genes related to cell-cell junctions and spermatogenesis. The data were further confirmed in mouse spermatogonia stem cell line C18-4 cells through knockdown of lncRNA8276. DISCUSSION AND CONCLUSION: Our study suggests that lncRNA8276 may be involved in cell-cell junction formation in the mouse testis to regulate spermatogenesis. It may be a target for the modification of spermatogenesis and male fertility, or male contraception. This investigation offers a potential therapeutic strategy for male infertility.


Asunto(s)
Adhesión Celular , ARN Largo no Codificante , Espermatogénesis , Animales , Adhesión Celular/genética , Humanos , Masculino , Ratones , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Semen , Espermatogénesis/genética , Espermatogonias , Testículo/metabolismo
8.
Front Microbiol ; 13: 923656, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35774455

RESUMEN

Obesity-related diseases are always the major health problems that concern the whole world. Serial studies have reported that obesity development is closely related to the out-of-control leptin encoded by the obesity gene (ob). The latest report declaimed "Less Is More," a model explaining that partial leptin reduction triggers leptin sensitization and contributes to obesity control. Here, we came up with a novel concept, in vivo protein interference (iPRTi), an interesting protein knock-down strategy for in vivo partial leptin reduction. First, the specific immune response against leptin induced by the oral administration of ob recombinant yeast was confirmed. Subsequentally, leptin resistance was observed in diet-induced obese mice, and oral administration with ob recombinant yeast declined the circulating leptin and reduced significantly the body weight gain. To further investigate whether the iPRTi strategy is capable of obesity management, the diet-induced obese mice were administrated with ob recombinant yeast. All the indexes examined including the circulating leptin, triglyceride, and total cholesterol, as well as food intake and weight gain, demonstrated a positive effect of the iPRTi strategy on obesity control. In short, this study provides a novel strategy for the potential application of recombinant yeast for the therapy of obese individuals with leptin resistance.

9.
Food Funct ; 13(5): 3077, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35136891

RESUMEN

Correction for 'Chestnut polysaccharides restore impaired spermatogenesis by adjusting gut microbiota and the intestinal structure' by Zhong-Yi Sun et al., Food Funct., 2022, 13, 425-436, DOI: 10.1039/D1FO03145G.

10.
Food Funct ; 13(1): 425-436, 2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-34913451

RESUMEN

Our previous study confirmed the beneficial effects of chestnut polysaccharides (CPs) on the spermatogenesis process, but the exact mechanism is not clear. Several studies have demonstrated the importance of balanced gut microbiota in maintaining normal reproductive function. In this study, we investigated the biological functions of CPs from the perspective of gut microbiota function, expecting to find out the specific mechanism of CPs in restoring impaired spermatogenesis. Compared with the control group, the mice treated with busulfan showed a reduced number of germ cells, structural changes in the small intestine and composition alteration in the gut microbiota at several levels, including the phylum and genus. In contrast, the number of germ cells in seminiferous tubules was significantly increased, and the structure of the small intestine and the composition of the gut microbiota were altered in the busulfan-treated mice after the CPs treatment. The 16s rRNA analysis results showed that the Firmicutes was the predominant phylum in all groups followed by Proteobacteria, Bacteroidetes, Actinobacteria, Tenericutes, Cyanobacteria and unidentified bacteria. Interestingly, the subsequent functional analysis implied that the steroid hormone biosynthesis process is the major metabolic pathway in the CPs-mediated restoration process and the experimental results confirmed this speculation. In conclusion, this study confirmed that CPs can restore the impaired spermatogenesis process by adjusting the gut microbiota and intestinal structure, which will also provide technical support and a theoretical basis for the subsequent treatment of male infertility.


Asunto(s)
Aesculus/química , Microbioma Gastrointestinal/efectos de los fármacos , Nueces/química , Polisacáridos/farmacología , Espermatogénesis/efectos de los fármacos , Animales , Infertilidad Masculina/metabolismo , Intestinos/efectos de los fármacos , Masculino , Ratones
11.
Mol Omics ; 18(1): 83-91, 2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-34816866

RESUMEN

Asthenozoospermia (AZS), diagnosed by reduced sperm motility, is one of the major causes of male infertility. However, AZS has no effective therapeutic treatment and the underlying molecular mechanism remains largely unclear. In this study, state-of-the-art 4D-quantitative proteomics analysis was used to compare the protein profiling between 7 normozoospermic and 11 asthenozoospermic sperm samples. Overall, 4718 proteins were identified and 1430 differential abundant proteins were found in the two groups. The differentially expressed proteins were analyzed by GO and KEGG. The core deregulated proteins and pathways associated sperm motility dysfunction included energy metabolism and the sperm structure. Integrative analysis further identified extracellular matrix protein 1 (ECM1) as a novel biomarker related to AZS. Our study could provide new insights into the molecular basis of low sperm motility. The mass spectrometric data are available via ProteomeXchange with identifier PXD027637.


Asunto(s)
Astenozoospermia , Astenozoospermia/diagnóstico , Astenozoospermia/genética , Astenozoospermia/metabolismo , Biomarcadores , Proteínas de la Matriz Extracelular , Humanos , Masculino , Proteómica/métodos , Motilidad Espermática
12.
Clin Transl Med ; 11(10): e560, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34709759

RESUMEN

BACKGROUND: The transdifferentiation of skin-derived stem cells (SDSCs) into primordial germ cell-like cells (PGCLCs) is one of the major breakthroughs in the field of stem cells research in recent years. This technology provides a new theoretical basis for the treatment of human infertility. However, the transdifferentiation efficiency of SDSCs to PGCLCs is very low, and scientists are still exploring ways to improve this efficiency or promote the proliferation of PGCLCs. This study aims to investigate the molecular mechanism of luteinising hormone (LH) to enhance porcine PGCLCs (pPGCLCs) proliferation. RESULTS: In this study, we dissected the proliferation regulatory network of pPGCLCs by whole transcriptome sequencing, and the results showed that the pituitary-secreted reproductive hormone LH significantly promoted the proliferation of pPGCLCs. We combined whole transcriptome sequencing and related validation experiments to explore the mechanism of LH on the proliferation of pPGCLCs, and found that LH could affect the expression of Hippo signalling pathway-related mRNAs, miRNAs and lncRNAs in pPGCLCs. CONCLUSIONS: For the first time, we found that LH promotes pPGCLCs proliferation through the competing endogenous RNA (ceRNA) regulatory networks and Hippo signalling pathway. This finding may help to elucidate the molecular mechanism by which LH promotes pPGCLCs proliferation.


Asunto(s)
Proliferación Celular/genética , Células Germinativas/metabolismo , Hormona Luteinizante/genética , Hormona Luteinizante/metabolismo , ARN Largo no Codificante/metabolismo , Células Madre/metabolismo , Animales , Vía de Señalización Hippo/genética , ARN Largo no Codificante/genética , Porcinos , Transcriptoma/genética
13.
Aging (Albany NY) ; 13(7): 10208-10224, 2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33819193

RESUMEN

Teratozoospermia is a common category of male infertility and with the increase in clinical patients and the increasing sophistication of assisted reproductive technology, there is an urgent need for an accurate semen diagnostic biomarker to accomplish rapid diagnosis of patients with teratozoospermia and accurately assess the success rate of assisted reproductive technologies. In this study, we performed gene differential expression analysis on two publicly available DNA microarray datasets (GSE6872 and GSE6967), followed by GSEA analysis to parse their enriched KEGG pathways, and WGCNA analysis to obtain the most highly correlated modules. Subsequent in-depth comparative analysis of the modules screened into the two datasets resulted in a gene set containing the identical expression trend, and then the differentially expressed genes in the set were screened using the corresponding criteria. Finally, three differentially expressed genes common to both datasets were selected. In addition, we validated the expression changes of this gene using another dataset (GSE6968) and in vitro experiments, and only screened one potential semen biomarker gene whose expression trend was identical to those in other datasets, which will also provide an important theoretical basis for the diagnosis and treatment of teratozoospermia.


Asunto(s)
Biomarcadores/metabolismo , Perfilación de la Expresión Génica/métodos , Expresión Génica , Teratozoospermia/diagnóstico , Adulto , Biología Computacional , Humanos , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Teratozoospermia/genética , Teratozoospermia/metabolismo
14.
Aging (Albany NY) ; 13(5): 7052-7066, 2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33621950

RESUMEN

Non-obstructive azoospermia (NOA) is the most severe form of male infertility owing to the absence of sperm during ejaculation as a result of failed spermatogenesis. The molecular mechanisms of NOA have not been well studied. Here, we revealed the dysregulated differentially expressed genes in NOA and related signaling pathways or biological processes. Cluster features of biological processes include spermatogenesis, fertilization, cilium movement, penetration of zona pellucida, sperm chromatin condensation, and being significantly enriched metabolic pathways in proximal tubule bicarbonate reclamation, aldosterone synthesis and secretion, glycolysis and glycogenesis pathways in NOA using Gene Ontology analysis and pathway enrichment analysis. The NOA gene co-expression network was constructed by weighted gene co-expression network analysis to identify the hub genes (CHD5 and SPTBN2). In addition, we used another Gene Expression Omnibus dataset (GSE45887) to validate these hub genes. Furthermore, we used the Seurat package to classify testicular tissue cells from NOA patients and to characterize the differential expression of hub genes in different cell types from different adult males based on the scRNA-seq dataset (GSE106487). These results provide new insights into the pathogenesis of NOA. Of particular note, CHD5 and SPTBN2 may be potential biomarkers for the diagnosis and treatment of NOA.


Asunto(s)
Azoospermia/metabolismo , Biomarcadores/metabolismo , ADN Helicasas/metabolismo , Conjuntos de Datos como Asunto , Perfilación de la Expresión Génica , Humanos , Masculino , Proteínas del Tejido Nervioso/metabolismo , Espectrina/metabolismo , Testículo/metabolismo
15.
Biomed Pharmacother ; 118: 109147, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31302418

RESUMEN

Base on the practical of MSTN-specific yeast-based protein vaccine in mice as described previously, this research was designed for developing a better DNA vaccine (a cascade of shIL21-MSTN yeast-based DNA vaccine) than solely MSTN yeast-based DNA vaccine to block the endogenous MSTN in the murine model. We first constructed the target vectors, including CMV-driven MSTN expression vector and a combined shIL21-MSTN vector which containing MSTN expression cassette and shIL21 (short hairpin RNA-IL21) expression cassette. After necessary validation, recombinant yeast vaccines harboring different vectors were well prepared. Subsequently, after 2-month administration, the MSTN-specific immune response was detected with western blots. The commercial ELISA assays indicated that the production of IL21 and IL6 were decreased compared with control groups. More importantly, the MSTN-specific antibody titer was much higher in the shIL21-MSTN group than MSTN group, which was consistent with the western blots result. The most important finding was significant body mass increased after oral administration of these yeast-based DNA vaccines, in which the shIL21-MSTN vaccine is slightly higher than the sole MSTN vaccine in mice. In this study, we confirmed the role of different MSTN-specific yeast-based DNA vaccines on increasing body mass in mice, to provide a good inspiration for livestock breeding through the new type of immunoregulatory method. On the other hand, we also detected the possible modulating role of shIL21 on the dendritic cell-mediated immune function which needs more practical application and deeper exploration.


Asunto(s)
Peso Corporal/inmunología , Interleucinas/genética , Mucosa Intestinal , Miostatina , ARN Interferente Pequeño/genética , Vacunas de ADN/inmunología , Administración Oral , Animales , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Femenino , Vectores Genéticos , Interleucinas/inmunología , Mucosa Intestinal/inmunología , Ratones , Ratones Endogámicos , Miostatina/genética , Miostatina/metabolismo , ARN Interferente Pequeño/inmunología , Saccharomyces cerevisiae/genética , Vacunas de ADN/administración & dosificación , Vacunas de ADN/genética
16.
Fish Shellfish Immunol ; 84: 948-954, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30445667

RESUMEN

Our previous study has demonstrated that recombinant yeast can induce specific immune responses in Carassius auratus and may serve as a potential carrier for oral DNA vaccines in aquaculture. In this study, we further developed an effective yeast-based oral DNA vaccine against the bacteria Aeromonas hydrophila, which was expected to provide protection from the motile aeromonad septicemia (MAS). First, two candidate antigen genes, ompG and omp48, were cloned from the Aeromonas hydrophila genome DNA. Then, relative yeast-eukaryote shuttle vectors were constructed and their expression in eukaryotes was validated. Next, crucian carps were orally administered with ompG or omp48 recombinant yeast, and the expression of the genes in the intestinal mucosa was confirmed by immunohistochemistry (IHC). The specific immune responses were further detected by Western blot and enzyme-linked immunosorbent assay (ELISA). The ELISA results showed that the production of the OVA-specific antibody in the OVA-ompG group was significantly higher than that of the OVA-omp48 group, indicating that the OVA-ompG group elicited obviously stronger immune response than OVA-omp48. Finally, the challenge experiment against Aeromonas hydrophila infection demonstrated decreased fish mortality rate after the oral administration of the OVA-ompG yeast vaccine. In conclusion, our work provided a framework for the further development of oral yeast-based fishery vaccines.


Asunto(s)
Aeromonas hydrophila/inmunología , Vacunas Bacterianas/uso terapéutico , Carpas , Enfermedades de los Peces/prevención & control , Carpa Dorada , Infecciones por Bacterias Gramnegativas/veterinaria , Vacunas de ADN/uso terapéutico , Animales , Vacunas Bacterianas/administración & dosificación , Enfermedades de los Peces/microbiología , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/prevención & control , Saccharomyces cerevisiae/química , Vacunas de ADN/administración & dosificación
17.
Fish Shellfish Immunol ; 56: 534-542, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27514783

RESUMEN

ADAR (adenosine deaminases acting on RNA)-mediated adenosine-to-inosine (A-to-I) editing to double-stranded RNA (dsRNA) is a critical arm of the antiviral response. The present study focused on the structural and functional characterizations of grass carp (Ctenopharyngodon idella) ADAR2 (CiADAR2) gene. The complete genomic sequence of CiADAR2 is 150,458 bp in length, containing 12 exons and 11 introns. The open reading frame (ORF) of 2100 bp encodes a polypeptide of 699 amino acids (aa) which contains three highly conservative domains - two N-terminal dsRNA binding domains (dsRBDs) and one C-terminal deaminase domain. The predicted crystal structure of CiADAR2 deaminase domain suggested a catalytic center form in the enzyme active site. CiADAR2 mRNA was ubiquitously expressed in the fifteen tested tissues, and was induced post GCRV challenge in spleen and head kidney and C. idella kidney (CIK) cells. The ex vivo expression of CiADAR2 protein was verified by the Flag (tag)-based western blot assay. Antiviral activity assay of CiADAR2 was manifested by the delayed appearance of cytopathic effect (CPE) and inhibition of GCRV yield at 48 h post infection. Furthermore, in CiADAR2 overexpression cells, mRNA expression levels of CiIFN1, CiTLR7 and CiTLR8 were facilitated at different time points after GCRV infection, comparing to those in control group. Taken together, it was indicated that ADAR2 was an antiviral cytokine against GCRV and anti-GCRV function mechanism might involve in the TLR7/8-regulated IFN-signaling. These findings suggested that CiADAR2 was a novel member engaging in antiviral innate immune defense in C. idella, which laid a foundation for the further mechanism research of ADAR2 in fishes.


Asunto(s)
Adenosina Desaminasa/genética , Carpas , Enfermedades de los Peces/genética , Proteínas de Peces/genética , Inmunidad Innata , Infecciones por Reoviridae/veterinaria , Adenosina Desaminasa/metabolismo , Animales , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Proteínas de Peces/metabolismo , Regulación de la Expresión Génica , Estructura Terciaria de Proteína , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reoviridae/fisiología , Infecciones por Reoviridae/genética , Infecciones por Reoviridae/inmunología , Infecciones por Reoviridae/virología , Análisis de Secuencia de ADN/veterinaria
18.
Fish Shellfish Immunol ; 47(2): 758-65, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26481518

RESUMEN

Oral delivery of DNA vaccines represents a promising vaccinating method for fish. Recombinant yeast has been proved to be a safe carrier for delivering antigen proteins and DNAs to some species in vivo. However, whether recombinant yeast can be used to deliver functional DNAs for vaccination to fish is still unknown. In this study, red crucian carp (Carassius auratus) was orally administrated with recombinant Saccharomyces cerevisiae harboring CMV-EGFP expression cassette. On day 5 post the first vaccination, EGFP expression in the hindgut was detected under fluorescence microscope. To further study whether the delivered gene could induce specific immune responses, the model antigen ovalbumin (OVA) was used as immunogen, and oral administrations were conducted with recombinant S. cerevisiae harboring pCMV-OVA mammalian gene expression cassette as gene delivery or pADH1-OVA yeast gene expression cassette as protein delivery. Each administration was performed with three different doses, and the OVA-specific serum antibody was detected in all the experimental groups by western blotting and enzyme-linked immunosorbent assay (ELISA). ELISA assay also revealed that pCMV-OVA group with lower dose (pCMV-OVA-L) and pADH1-OVA group with moderate dose (pADH1-OVA-M) triggered relatively stronger antibody response than the other two doses. Moreover, the antibody level induced by pCMV-OVA-L group was significantly higher than pADH1-OVA-M group at the same serum dilutions. All the results suggested that recombinant yeast can be used as a potential carrier for oral DNA vaccines and would help to develop more practical strategies to control infectious diseases in aquaculture.


Asunto(s)
Infecciones por Citomegalovirus/veterinaria , Citomegalovirus/inmunología , Enfermedades de los Peces/prevención & control , Carpa Dorada , Saccharomyces cerevisiae , Vacunas Virales/inmunología , Animales , Anticuerpos Antivirales/metabolismo , Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/prevención & control , Infecciones por Citomegalovirus/virología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ovalbúmina/metabolismo , Saccharomyces cerevisiae/genética , Vacunas de ADN/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...