Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.254
1.
Animals (Basel) ; 14(9)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38731280

Our preliminary research proposed the cytochrome P450 family 7 subfamily A member 1 (CYP7A1) and hydroxyacyl-coenzyme A dehydrogenase trifunctional multienzyme complex beta subunit (HADHB) genes as candidates for association with milk-production traits in dairy cattle because of their differential expression across different lactation stages in the liver tissues of Chinese Holstein cows and their potential roles in lipid metabolism. Hence, we identified single-nucleotide polymorphisms (SNPs) of the CYP7A1 and HADHB genes and validated their genetic effects on milk-production traits in a Chinese Holstein population with the goal of providing valuable genetic markers for genomic selection (GS) in dairy cattle, This study identified five SNPs, 14:g.24676921A>G, 14:g.24676224G>A, 14:g.24675708G>T, 14:g.24665961C>T, and 14:g.24664026A>G, in the CYP7A1 gene and three SNPs, 11:g.73256269T>C, 11:g.73256227A>C, and 11:g.73242290C>T, in HADHB. The single-SNP association analysis revealed significant associations (p value ≤ 0.0461) between the eight SNPs of CYP7A1 and HADHB genes and 305-day milk, fat and protein yields. Additionally, using Haploview 4.2, we found that the five SNPs of CYP7A1 formed two haplotype blocks and that the two SNPs of HADHB formed one haplotype block; notably, all three haplotype blocks were also significantly associated with milk, fat and protein yields (p value ≤ 0.0315). Further prediction of transcription factor binding sites (TFBSs) based on Jaspar software (version 2023) showed that the 14:g.24676921A>G, 14:g.24675708G>T, 11:g.73256269T>C, and 11:g.73256227A>C SNPs could alter the 5' terminal TFBS of the CYP7A1 and HADHB genes. The 14:g.24665961C>T SNP caused changes in the structural stability of the mRNA for the CYP7A1 gene. These alterations have the potential to influence gene expression and, consequently, the phenotype associated with milk-production traits. In summary, we have confirmed the genetic effects of CYP7A1 and HADHB genes on milk-production traits in dairy cattle and identified potential functional mutations that we suggest could be used for GS of dairy cattle and in-depth mechanistic studies of animals.

2.
World J Gastrointest Surg ; 16(4): 1055-1065, 2024 Apr 27.
Article En | MEDLINE | ID: mdl-38690047

BACKGROUND: Colon cancer is one of the most common malignant tumors of the digestive system. Liver metastasis after colon cancer surgery is the primary cause of death in patients with colon cancer. AIM: To construct a novel nomogram model including various factors to predict liver metastasis after colon cancer surgery. METHODS: We retrospectively analyzed 242 patients with colon cancer who were admitted and underwent radical resection for colon cancer in Zhejiang Provincial People's Hospital from December 2019 to December 2022. Patients were divided into liver metastasis and non-liver metastasis groups. Sex, age, and other general and clinicopathological data (preoperative blood routine and biochemical test indexes) were compared. The risk factors for liver metastasis were analyzed using single-factor and multifactorial logistic regression. A predictive model was then constructed and evaluated for efficacy. RESULTS: Systemic inflammatory index (SII), C-reactive protein/albumin ratio (CAR), red blood cell distribution width (RDW), alanine aminotransferase, preoperative carcinoembryonic antigen level, and lymphatic metastasis were different between groups (P < 0.05). SII, CAR, and RDW were risk factors for liver metastasis after colon cancer surgery (P < 0.05). The area under the curve was 0.93 for the column-line diagram prediction model constructed based on these risk factors to distinguish whether liver metastasis occurred postoperatively. The actual curve of the column-line diagram predicting the risk of postoperative liver metastasis was close to the ideal curve, with good agreement. The prediction model curves in the decision curve analysis showed higher net benefits for a larger threshold range than those in extreme cases, indicating that the model is safer. CONCLUSION: Liver metastases after colorectal cancer surgery could be well predicted by a nomogram based on the SII, CAR, and RDW.

3.
Chem Biol Drug Des ; 103(5): e14556, 2024 May.
Article En | MEDLINE | ID: mdl-38772881

Histone deacetylase 6 (HDAC6), as the key regulatory enzyme, plays an important role in the development of the nervous system. More and more studies indicate that HDAC6 has become a promising therapeutic target for CNS diseases. Herein we designed and synthesized a series of novel HDAC6 inhibitors with benzothiadiazinyl systems as cap groups and evaluated their activity in vitro and in vivo. Among them, compound 3 exhibited superior selective inhibitory activity against HDAC6 (IC50 = 5.1 nM, about 30-fold selectivity over HDAC1). The results of docking showed that compound 3 can interact well with the key amino acid residues of HDAC6. Compound 3 showed lower cytotoxicity (20 µM to SH-SY5Y cells, inhibition rate = 25.75%) and better neuroprotective activity against L-glutamate-induced SH-SY5Y cell injury model in vitro. Meanwhile, compound 3 exhibited weak cardiotoxicity (10 µM hERG inhibition rate = 17.35%) and possess good druggability properties. Especially, compound 3 could significantly reduce cerebral infarction from 49.87% to 32.18%, and similar with butylphthalide in MCAO model, indicating potential clinical application prospects for alleviating ischemic stroke-induced brain infarction.


Drug Design , Histone Deacetylase 6 , Histone Deacetylase Inhibitors , Molecular Docking Simulation , Neuroprotective Agents , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/chemistry , Humans , Histone Deacetylase 6/antagonists & inhibitors , Histone Deacetylase 6/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Neuroprotective Agents/chemical synthesis , Animals , Structure-Activity Relationship , Cell Line, Tumor , Male , Mice , Binding Sites , Rats
4.
J Transl Med ; 22(1): 474, 2024 May 19.
Article En | MEDLINE | ID: mdl-38764020

BACKGROUND: The initiation of fibroblast growth factor 1 (FGF1) expression coincident with the decrease of FGF2 expression is a well-documented event in prostate cancer (PCa) progression. Lactate dehydrogenase A (LDHA) and LDHB are essential metabolic products that promote tumor growth. However, the relationship between FGF1/FGF2 and LDHA/B-mediated glycolysis in PCa progression is not reported. Thus, we aimed to explore whether FGF1/2 could regulate LDHA and LDHB to promote glycolysis and explored the involved signaling pathway in PCa progression. METHODS: In vitro studies used RT‒qPCR, Western blot, CCK-8 assays, and flow cytometry to analyze gene and protein expression, cell viability, apoptosis, and cell cycle in PCa cell lines. Glycolysis was assessed by measuring glucose consumption, lactate production, and extracellular acidification rate (ECAR). For in vivo studies, a xenograft mouse model of PCa was established and treated with an FGF pathway inhibitor, and tumor growth was monitored. RESULTS: FGF1, FGF2, and LDHA were expressed at high levels in PCa cells, while LDHB expression was low. FGF1/2 positively modulated LDHA and negatively modulated LDHB in PCa cells. The depletion of FGF1, FGF2, or LDHA reduced cell proliferation, induced cell cycle arrest, and inhibited glycolysis. LDHB overexpression showed similar inhibitory effect on PCa cells. Mechanistically, we found that FGF1/2 positively regulated STAT1 and STAT1 transcriptionally activated LDHA expression while suppressed LDHB expression. Furthermore, the treatment of an FGF pathway inhibitor suppressed PCa tumor growth in mice. CONCLUSION: The FGF pathway facilitates glycolysis by activating LDHA and suppressing LDHB in a STAT1-dependent manner in PCa.


Fibroblast Growth Factors , Glycolysis , L-Lactate Dehydrogenase , Prostatic Neoplasms , STAT1 Transcription Factor , Signal Transduction , Male , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/genetics , Humans , Animals , L-Lactate Dehydrogenase/metabolism , Cell Line, Tumor , STAT1 Transcription Factor/metabolism , Fibroblast Growth Factors/metabolism , Mice, Nude , Cell Proliferation , Mice , Gene Expression Regulation, Neoplastic , Fibroblast Growth Factor 2/metabolism , Apoptosis , Lactate Dehydrogenase 5/metabolism , Isoenzymes
5.
Proc Natl Acad Sci U S A ; 121(20): e2312855121, 2024 May 14.
Article En | MEDLINE | ID: mdl-38713626

The immune landscape of bladder cancer progression is not fully understood, and effective therapies are lacking in advanced bladder cancer. Here, we visualized that bladder cancer cells recruited neutrophils by secreting interleukin-8 (IL-8); in turn, neutrophils played dual functions in bladder cancer, including hepatocyte growth factor (HGF) release and CCL3highPD-L1high super-immunosuppressive subset formation. Mechanistically, c-Fos was identified as the mediator of HGF up-regulating IL-8 transcription in bladder cancer cells, which was central to the positive feedback of neutrophil recruitment. Clinically, compared with serum IL-8, urine IL-8 was a better biomarker for bladder cancer prognosis and clinical benefit of immune checkpoint blockade (ICB). Additionally, targeting neutrophils or hepatocyte growth factor receptor (MET) signaling combined with ICB inhibited bladder cancer progression and boosted the antitumor effect of CD8+ T cells in mice. These findings reveal the mechanism by which tumor-neutrophil cross talk orchestrates the bladder cancer microenvironment and provide combination strategies, which may have broad impacts on patients suffering from malignancies enriched with neutrophils.


Disease Progression , Interleukin-8 , Neutrophils , Tumor Microenvironment , Urinary Bladder Neoplasms , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/immunology , Tumor Microenvironment/immunology , Humans , Neutrophils/immunology , Neutrophils/metabolism , Animals , Mice , Interleukin-8/metabolism , Cell Line, Tumor , Hepatocyte Growth Factor/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , B7-H1 Antigen/metabolism , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Female , Male , Neutrophil Infiltration
6.
Signal Transduct Target Ther ; 9(1): 133, 2024 May 15.
Article En | MEDLINE | ID: mdl-38744811

Sirtuin 3 (SIRT3) is well known as a conserved nicotinamide adenine dinucleotide+ (NAD+)-dependent deacetylase located in the mitochondria that may regulate oxidative stress, catabolism and ATP production. Accumulating evidence has recently revealed that SIRT3 plays its critical roles in cardiac fibrosis, myocardial fibrosis and even heart failure (HF), through its deacetylation modifications. Accordingly, discovery of SIRT3 activators and elucidating their underlying mechanisms of HF should be urgently needed. Herein, we identified a new small-molecule activator of SIRT3 (named 2-APQC) by the structure-based drug designing strategy. 2-APQC was shown to alleviate isoproterenol (ISO)-induced cardiac hypertrophy and myocardial fibrosis in vitro and in vivo rat models. Importantly, in SIRT3 knockout mice, 2-APQC could not relieve HF, suggesting that 2-APQC is dependent on SIRT3 for its protective role. Mechanically, 2-APQC was found to inhibit the mammalian target of rapamycin (mTOR)-p70 ribosomal protein S6 kinase (p70S6K), c-jun N-terminal kinase (JNK) and transforming growth factor-ß (TGF-ß)/ small mother against decapentaplegic 3 (Smad3) pathways to improve ISO-induced cardiac hypertrophy and myocardial fibrosis. Based upon RNA-seq analyses, we demonstrated that SIRT3-pyrroline-5-carboxylate reductase 1 (PYCR1) axis was closely assoiated with HF. By activating PYCR1, 2-APQC was shown to enhance mitochondrial proline metabolism, inhibited reactive oxygen species (ROS)-p38 mitogen activated protein kinase (p38MAPK) pathway and thereby protecting against ISO-induced mitochondrialoxidative damage. Moreover, activation of SIRT3 by 2-APQC could facilitate AMP-activated protein kinase (AMPK)-Parkin axis to inhibit ISO-induced necrosis. Together, our results demonstrate that 2-APQC is a targeted SIRT3 activator that alleviates myocardial hypertrophy and fibrosis by regulating mitochondrial homeostasis, which may provide a new clue on exploiting a promising drug candidate for the future HF therapeutics.


Cardiomegaly , Fibrosis , Sirtuin 3 , Animals , Sirtuin 3/genetics , Sirtuin 3/metabolism , Cardiomegaly/genetics , Cardiomegaly/drug therapy , Cardiomegaly/pathology , Cardiomegaly/chemically induced , Cardiomegaly/metabolism , Fibrosis/genetics , Rats , Mice , Isoproterenol , Humans , Mice, Knockout , Homeostasis/drug effects , Mitochondria/drug effects , Mitochondria/genetics , Mitochondria/pathology , Mitochondria/metabolism , Mitochondria, Heart/drug effects , Mitochondria, Heart/genetics , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Myocardium/pathology , Myocardium/metabolism , Male
7.
J Craniofac Surg ; 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38568861

PURPOSE: Iatrogenic lip injury may occur during oral and maxillofacial surgical procedures. This study aimed to evaluate the effect of oral retractors on iatrogenic lip injury prevention during intraoral procedures of oral and maxillofacial surgery. METHODS: We conducted a randomized controlled trial and included patients who underwent intraoral procedures of oral and maxillofacial surgery. Patients were randomly allocated to receive oral retractor (intervention group) or traditional procedure without lip protection (control group). The incidence of lip injury was the outcome variable. Other study variables included surgical time and satisfaction of patients and surgeons with treatment experience evaluated by visual analog scale (VAS). Student t test and χ2 test were used to compare both groups' variables and measure the relationship between the predictor variable and the outcome variable. P<0.05 was considered significant for all analyses. RESULTS: A total of 114 patients were included, with 56 allocated to intervention group and 58 to control group. The results showed that the application of an oral retractor did not significantly increase surgical time (P=0.318). A total of 12 patients had lip injury, with 1 in the intervention group and 11 in the control group (P=0.003). For the assessment of satisfaction with treatment experience, the intervention group had significantly higher VAS scores for doctors and patients (P<0.05). CONCLUSIONS: We found that the oral retractor was a good tool for iatrogenic lip injury prevention in oral and maxillofacial surgical procedures and could be considered in clinical treatment.

9.
Angew Chem Int Ed Engl ; : e202404515, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38637293

Reductive amination of carbonyl compounds and nitro compounds represents a straightforward way to attain imines or secondary amines, but it is difficult to control the product selectivity. Herein, we report the selective formation of C-N or C=N bond readily manipulated through a solvent-induced hydrogen bond bridge, facilitating the swift photocatalytic reductive coupling process. The reductive-coupling of nitro compounds with carbonyl compounds using formic acid and sodium formate as the hydrogen donors over CdS nanosheets selectively generates imines with C=N bonds in acetonitrile solvent; while taking methanol as solvent, the C=N bonds are readily hydrogenated to the C-N bonds via hydrogen-bonding activation. Experimental and theoretical study reveals that the building of the hydrogen-bond bridge between the hydroxyl groups in methanol and the N atoms of the C=N motifs in imines facilitates the transfer of hydrogen atoms from CdS surface to the N atoms in imines upon illumination, resulting in the rapid hydrogenation of the C=N bonds to give rise to the secondary amines with C-N bonds. Our method provides a simple way to control product selectivity by altering the solvents in photocatalytic organic transformations.

10.
Bioorg Chem ; 146: 107327, 2024 May.
Article En | MEDLINE | ID: mdl-38579616

Colorectal cancer (CRC) is well known as a prevalent malignancy affecting the digestive tract, yet its precise etiological determinants remain to be elusive. Accordingly, identifying specific molecular targets for colorectal cancer and predicting potential malignant tumor behavior are potential strategies for therapeutic interventions. Of note, apoptosis (type I programmed cell death) has been widely reported to play a pivotal role in tumorigenesis by exerting a suppressive effect on cancer development. Moreover, autophagy-dependent cell death (type II programmed cell death) has been implicated in different types of human cancers. Thus, investigating the molecular mechanisms underlying apoptosis and autophagy-dependent cell death is paramount in treatment modalities of colorectal cancer. In this study, we uncovered that a new small-molecule activator of SIRT3, named MY-13, triggered both autophagy-dependent cell death and apoptosis by modulating the SIRT3/Hsp90/AKT signaling pathway. Consequently, this compound inhibited tumor cell proliferation and migration in RKO and HCT-116 cell lines. Moreover, we further demonstrated that the small-molecule activator significantly suppressed tumor growth in vivo. In conclusion, these findings demonstrate that the novel small-molecule activator of SIRT3 may hold a therapeutic potential as a drug candidate in colorectal cancer.


Autophagic Cell Death , Colorectal Neoplasms , Sirtuin 3 , Humans , Colorectal Neoplasms/metabolism , Autophagy , Cell Proliferation , Apoptosis , Cell Line, Tumor
11.
Med Res Rev ; 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38591229

Metal complexes based on N-heterocyclic carbene (NHC) ligands have emerged as promising broad-spectrum antitumor agents in bioorganometallic medicinal chemistry. In recent decades, studies on cytotoxic metal-NHC complexes have yielded numerous compounds exhibiting superior cytotoxicity compared to cisplatin. Although the molecular mechanisms of these anticancer complexes are not fully understood, some potential targets and modes of action have been identified. However, a comprehensive review of their biological mechanisms is currently absent. In general, apoptosis caused by metal-NHCs is common in tumor cells. They can cause a series of changes after entering cells, such as mitochondrial membrane potential (MMP) variation, reactive oxygen species (ROS) generation, cytochrome c (cyt c) release, endoplasmic reticulum (ER) stress, lysosome damage, and caspase activation, ultimately leading to apoptosis. Therefore, a detailed understanding of the influence of metal-NHCs on cancer cell apoptosis is crucial. In this review, we provide a comprehensive summary of recent advances in metal-NHC complexes that trigger apoptotic cell death via different apoptosis-related targets or signaling pathways, including B-cell lymphoma 2 (Bcl-2 family), p53, cyt c, ER stress, lysosome damage, thioredoxin reductase (TrxR) inhibition, and so forth. We also discuss the challenges, limitations, and future directions of metal-NHC complexes to elucidate their emerging application in medicinal chemistry.

12.
J Cell Mol Med ; 28(8): e18208, 2024 Apr.
Article En | MEDLINE | ID: mdl-38613347

Increasing evidences have found that the interactions between hypoxia, immune response and metabolism status in tumour microenvironment (TME) have clinical importance of predicting clinical outcomes and therapeutic efficacy. This study aimed to develop a reliable molecular stratification based on these key components of TME. The TCGA data set (training cohort) and two independent cohorts from CGGA database (validation cohort) were enrolled in this study. First, the enrichment score of 277 TME-related signalling pathways was calculated by gene set variation analysis (GSVA). Then, consensus clustering identified four stable and reproducible subtypes (AFM, CSS, HIS and GLU) based on TME-related signalling pathways, which were characterized by differences in hypoxia and immune responses, metabolism status, somatic alterations and clinical outcomes. Among the four subtypes, HIS subtype had features of immunosuppression, oxygen deprivation and active energy metabolism, resulting in a worst prognosis. Thus, for better clinical application of this acquired stratification, we constructed a risk signature by using the LASSO regression model to identify patients in HIS subtype accurately. We found that the risk signature could accurately screen out the patients in HIS subtype and had important reference value for individualized treatment of glioma patients. In brief, the definition of the TME-related subtypes was a valuable tool for risk stratification in gliomas. It might serve as a reliable prognostic classifier and provide rational design of individualized treatment, and follow-up scheduling for patients with gliomas.


Glioma , Tumor Microenvironment , Humans , Tumor Microenvironment/genetics , Energy Metabolism , Cluster Analysis , Glioma/diagnosis , Glioma/genetics , Hypoxia
13.
Nat Commun ; 15(1): 3418, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38653990

In single unit-cell FeSe grown on SrTiO3, the superconductivity transition temperature features a significant enhancement. Local phonon modes at the interface associated with electron-phonon coupling may play an important role in the interface-induced enhancement. However, such phonon modes have eluded direct experimental observations. The complicated atomic structure of the interface brings challenges to obtain the accurate structure-phonon relation knowledge. Here, we achieve direct characterizations of atomic structure and phonon modes at the FeSe/SrTiO3 interface with atomically resolved imaging and electron energy loss spectroscopy in an electron microscope. We find several phonon modes highly localized (~1.3 nm) at the unique double layer Ti-O terminated interface, one of which (~ 83 meV) engages in strong interactions with the electrons in FeSe based on ab initio calculations. This finding of the localized interfacial phonon associated with strong electron-phonon coupling provides new insights into understanding the origin of superconductivity enhancement at the FeSe/SrTiO3 interface.

14.
Nat Commun ; 15(1): 3475, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38658552

Somatic copy number alterations (SCNAs) are pervasive in advanced human cancers, but their prevalence and spatial distribution in early-stage, localized tumors and their surrounding normal tissues are poorly characterized. Here, we perform multi-region, single-cell DNA sequencing to characterize the SCNA landscape across tumor-rich and normal tissue in two male patients with localized prostate cancer. We identify two distinct karyotypes: 'pseudo-diploid' cells harboring few SCNAs and highly aneuploid cells. Pseudo-diploid cells form numerous small-sized subclones ranging from highly spatially localized to broadly spread subclones. In contrast, aneuploid cells do not form subclones and are detected throughout the prostate, including normal tissue regions. Highly localized pseudo-diploid subclones are confined within tumor-rich regions and carry deletions in multiple tumor-suppressor genes. Our study reveals that SCNAs are widespread in normal and tumor regions across the prostate in localized prostate cancer patients and suggests that a subset of pseudo-diploid cells drive tumorigenesis in the aging prostate.


DNA Copy Number Variations , Prostatic Neoplasms , Single-Cell Analysis , Humans , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Aneuploidy , Prostate/pathology , Prostate/metabolism , Clone Cells , Diploidy , Aged
15.
Eur J Pharmacol ; 972: 176553, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38574838

Stroke poses a significant risk of mortality, particularly among the elderly population. The pathophysiological process of ischemic stroke is complex, and it is crucial to elucidate its molecular mechanisms and explore potential protective drugs. Ferroptosis, a newly recognized form of programmed cell death distinct from necrosis, apoptosis, and autophagy, is closely associated with the pathophysiology of ischemic stroke. N6022, a selective inhibitor of S-nitrosoglutathione reductase (GSNOR), is a "first-in-class" drug for asthma with potential therapeutic applications. However, it remains unclear whether N6022 exerts protective effects in ischemic stroke, and the precise mechanisms of its action are unknown. This study aimed to investigate whether N6022 mitigates cerebral ischemia/reperfusion (I/R) injury by reducing ferroptosis and to elucidate the underlying mechanisms. Accordingly, we established an oxygen-glucose deprivation/reperfusion (OGD/R) cell model and a middle cerebral artery occlusion/reperfusion (MCAO/R) mouse model to mimic cerebral I/R injury. Our data, both in vitro and in vivo, demonstrated that N6022 effectively protected against I/R-induced brain damage and neurological deficits in mice, as well as OGD/R-induced BV2 cell damage. Mechanistically, N6022 promoted Nrf2 nuclear translocation, enhancing intracellular antioxidant capacity of SLC7A11-GPX4 system. Furthermore, N6022 interfered with the interaction of GSNOR with GSTP1, thereby boosting the antioxidant capacity of GSTP1 and attenuating ferroptosis. These findings provide novel insights, showing that N6022 attenuates microglial ferroptosis induced by cerebral I/R injury through the promotion of Nrf2 nuclear translocation and inhibition of the GSNOR/GSTP1 axis.


Benzamides , Ferroptosis , Microglia , NF-E2-Related Factor 2 , Pyrroles , Reperfusion Injury , Animals , Ferroptosis/drug effects , NF-E2-Related Factor 2/metabolism , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Mice , Microglia/drug effects , Microglia/metabolism , Microglia/pathology , Male , Mice, Inbred C57BL , Signal Transduction/drug effects , Infarction, Middle Cerebral Artery/pathology , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/drug therapy , Neuroprotective Agents/pharmacology , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Cell Nucleus/metabolism , Cell Nucleus/drug effects , Disease Models, Animal , Brain Ischemia/metabolism , Brain Ischemia/drug therapy , Brain Ischemia/pathology , Cell Line , Active Transport, Cell Nucleus/drug effects
16.
J Int Med Res ; 52(4): 3000605241245016, 2024 Apr.
Article En | MEDLINE | ID: mdl-38661098

OBJECTIVE: To assess the ability of markers of inflammation to identify the solid or micropapillary components of stage IA lung adenocarcinoma and their effects on prognosis. METHODS: We performed a retrospective study of clinicopathologic data from 654 patients with stage IA lung adenocarcinoma collected between 2013 and 2019. Logistic regression analysis was used to identify independent predictors of these components, and we also evaluated the relationship between markers of inflammation and recurrence. RESULTS: Micropapillary-positive participants had high preoperative neutrophil-to-lymphocyte ratios. There were no significant differences in the levels of markers of systemic inflammation between the participants with or without a solid component. Multivariate analysis showed that preoperative neutrophil-to-lymphocyte ratio (odds ratio [OR] = 2.094; 95% confidence interval [CI], 1.668-2.628), tumor size (OR = 1.386; 95% CI, 1.044-1.842), and carcinoembryonic antigen concentration (OR = 1.067; 95% CI, 1.017-1.119) were independent predictors of a micropapillary component. There were no significant correlations between markers of systemic inflammation and the recurrence of stage IA lung adenocarcinoma. CONCLUSIONS: Preoperative neutrophil-to-lymphocyte ratio independently predicts a micropapillary component of stage IA lung adenocarcinoma. Therefore, the potential use of preoperative neutrophil-to-lymphocyte ratio in the optimization of surgical strategies for the treatment of stage IA lung adenocarcinoma should be further studied.


Adenocarcinoma of Lung , Lung Neoplasms , Lymphocytes , Neoplasm Staging , Neutrophils , Humans , Neutrophils/pathology , Male , Female , Adenocarcinoma of Lung/surgery , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/blood , Adenocarcinoma of Lung/diagnosis , Middle Aged , Lung Neoplasms/surgery , Lung Neoplasms/blood , Lung Neoplasms/pathology , Lung Neoplasms/diagnosis , Aged , Lymphocytes/pathology , Retrospective Studies , Prognosis , Neoplasm Recurrence, Local/pathology , Neoplasm Recurrence, Local/blood , Lymphocyte Count , Biomarkers, Tumor/blood , Preoperative Period , Adult
17.
J Infect Dis ; 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38679784

Rotavirus is linked to severe childhood gastroenteritis and neurological complications, but its impact on neurodevelopment remains uncertain. We examined data from 1,420,941 Korean children born between 2009 and 2011, using the Korean National Health Insurance System. At age 6, we assessed neurodevelopmental outcomes using the validated Korean Developmental Test, covering six major domains. Utilizing propensity score-based Inverse Probability Weighting to ensure covariates including considering covariates including sex, birth weight, changes in body weight from birth to 4-6 months of age, head circumference at 4-6 months of age, residence at birth, economic status, infant feeding types, and birth year. The main analysis that encompassed 5,451 children with rotavirus hospitalization and 310,874 unexposed individuals reveled heightened odds of suspected delays in fine motor skills and cognition among exposed children. Our results suggest an association between rotavirus-related hospitalization in infancy and suspected delays in fine motor function and cognition in 6-year-olds.

18.
Article En | MEDLINE | ID: mdl-38683712

Sample selection approaches are popular in robust learning from noisy labels. However, how to control the selection process properly so that deep networks can benefit from the memorization effect is a hard problem. In this paper, motivated by the success of automated machine learning (AutoML), we propose to control the selection process by bi-level optimization. Specifically, we parameterize the selection process by exploiting the general patterns of the memorization effect in the upper-level, and then update these parameters using predicting accuracy obtained from model training in the lower-level. We further introduce semi-supervised learning algorithms to utiilize noisy-labeled data as unlabeled data. To solve the bi-level optimization problem efficiently, we consider more information from the validation curvature by the Newton method and cubic regularization method. We provide convergence analysis for both optimization methods. Results show that while both methods can converge to an (approximately) stationary point, the cubic regularization method can find better local optimal than the Newton method with less time. Experiments on both benchmark and real-world data sets demonstrate that the proposed searching method can lead to significant improvements upon existing methods. Compared with existing AutoML approaches, our method is much more efficient on finding a good selection schedule.

19.
Int J Biol Macromol ; 268(Pt 2): 131950, 2024 Apr 28.
Article En | MEDLINE | ID: mdl-38685547

Hydrogels with favorable biocompatibility and antibacterial properties are essential in postoperative wound hemorrhage care, facilitating rapid wound healing. The present investigation employed electrostatic adsorption of black phosphorus nanosheets (BPNPs) and nano­silver (AgNPs) to cross-link the protonated amino group NH3+ of quaternized chitosan (QCS) with the hydroxyl group of hyaluronic acid (HA). The electrostatic interaction between the two groups resulted in the formation of a three-dimensional gel network structure. Additionally, the hydrogel containing AgNPs deposited onto BPNPs was assessed for its antibacterial properties and effects on wound healing. Hydrogel demonstrated an outstanding drug-loading capacity and could be employed for wound closure. AgNPs loaded on the BPNPs released silver ions and exhibited potent antibacterial properties when exposed to 808 nm near-infrared (NIR) radiation. The ability of the hydrogel to promote wound healing in an acute wound model was further evaluated. The BPNPs were combined with HA and QCS in the aforementioned hydrogel system to improve adhesion, combine the photothermal and antibacterial properties of the BPNPs, and promote wound healing. Therefore, the reported hydrogels displayed excellent biocompatibility and hold significant potential for application in the field of tissue engineering for skin wound treatment.

20.
Org Lett ; 26(18): 3790-3795, 2024 May 10.
Article En | MEDLINE | ID: mdl-38666755

A cooperative gold(I)/DMAP system catalyzes the (2 + 3) cycloadditions of yne-enones with oxindole-derived Morita-Baylis-Hillman (MBH) carbonates, yielding diverse bispiro-cyclopentene oxindole products. The mild, scalable protocol demonstrates broad substrate scope and excellent chemo- and diastereoselectivity. Mechanistic study reveals pivotal roles of both catalysts in the unique (2 + 3) cycloaddition. This strategy showcases superiority in achieving transformation with unique chemoselectivity and excellent diastereoselectivity, unattainable through traditional monocatalytic methodologies.

...