Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Sci Rep ; 14(1): 9399, 2024 04 24.
Article En | MEDLINE | ID: mdl-38658654

Edwardsiella piscicida causes significant economic losses to the aquaculture industry worldwide. Phage-based biocontrol methods are experiencing a renaissance because of the spread of drug-resistant genes and bacteria resulting from the heavy use of antibiotics. Here, we showed that the novel Edwardsiella phage EPP-1 could achieve comparable efficacy to florfenicol using a zebrafish model of Edwardsiella piscicida infection and could reduce the content of the floR resistance gene in zebrafish excreta. Specifically, phage EPP-1 inhibited bacterial growth in vitro and significantly improved the zebrafish survival rate in vivo (P = 0.0035), achieving an efficacy comparable to that of florfenicol (P = 0.2304). Notably, integrating the results of 16S rRNA sequencing, metagenomic sequencing, and qPCR, although the effects of phage EPP-1 converged with those of florfenicol in terms of the community composition and potential function of the zebrafish gut microbiota, it reduced the floR gene content in zebrafish excreta and aquaculture water. Overall, our study highlights the feasibility and safety of phage therapy for edwardsiellosis control, which has profound implications for the development of antibiotic alternatives to address the antibiotic crisis.


Anti-Bacterial Agents , Bacteriophages , Edwardsiella , Enterobacteriaceae Infections , Thiamphenicol/analogs & derivatives , Zebrafish , Animals , Zebrafish/microbiology , Edwardsiella/genetics , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/veterinary , Enterobacteriaceae Infections/therapy , Bacteriophages/genetics , Bacteriophages/physiology , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Gastrointestinal Microbiome , Phage Therapy/methods , RNA, Ribosomal, 16S/genetics , Fish Diseases/microbiology , Fish Diseases/therapy , Fish Diseases/prevention & control , Thiamphenicol/pharmacology , Aquaculture/methods
2.
Water Res ; 232: 119709, 2023 Apr 01.
Article En | MEDLINE | ID: mdl-36764107

The ecological behavior of bacteriophages (phages), the most abundant biological entity in wastewater treatment systems, is poorly understood, especially that of temperate phages. Here, the temporal dynamics of lytic and temperate phages in a laboratory-scale activated sludge reactor with a sludge bulking issue was investigated using coupled sludge metagenomic and viromic analyses. The lysogenic fragments (prophages) identified were widely distributed in the reconstructed metagenome-assembled genomes (61.7%, n = 227). However, only 12.3% of the identified prophages experienced lysogenic-lytic switching, and the abundance contribution of prophages to free virus communities was only 0.02-0.3%, indicating low activity of temperate phages. Although the sludge community changed dramatically during reactor operation, no massive prophage induction events were detected. Statistical analyses showed strong correlations between sludge concentration and free virus and temperate phage communities, suggesting microbial density-dependent virus dynamics in the sludge microbiota.


Bacteriophages , Microbiota , Sewage , Lysogeny , Prophages
3.
Environ Res ; 219: 115161, 2023 02 15.
Article En | MEDLINE | ID: mdl-36580981

Soluble extracellular metabolites (SEM) produced by microorganisms might significantly change during sludge bulking, which is a major operational problem caused by the excessive growth of filamentous bacteria. However, knowledge remains limited about the dynamics and potential role of SEM in the bulking of sludge. In this study, filamentous bulking was simulated in a laboratory-scale reactor and changes to SEM characteristics during the bulking process were investigated using excitation-emission matrix spectroscopy and ultrahigh-performance liquid chromatography-mass spectrometry. SEM components changed significantly at different phases of sludge bulking. Changes in SEM were closely correlated with the structure of the bacterial community. Based on the EEM profiles, significant increases in fulvic acid-like and humic acid-like substances in SEM were observed with the development of filamentous bulking. The degree of humification in SEM showed a clear increasing trend. Untargeted extracellular metabolomic analysis showed that the intensity of berberine and isorhamnetin in SEM increased significantly during the bulking phase, which might synergistically facilitate the development of filamentous bulking.


Sewage , Waste Disposal, Fluid , Sewage/microbiology , Waste Disposal, Fluid/methods , Spectrum Analysis , Bacteria , Mass Spectrometry , Bioreactors
4.
J Microbiol ; 60(6): 594-601, 2022 Jun.
Article En | MEDLINE | ID: mdl-35437628

Community-based microbial source tracking (MST) can be used to determine fecal contamination from multiple sources in the aquatic environment. However, there is little scientific information on its application potential in water environmental management. Here, we compared SourceTracker and Fast Expectation-maximization Microbial Source Tracking (FEAST) performances on environmental water bodies exposed to low fecal pollution and evaluated treatment effects of fecal pollution in the watershed utilizing community-based MST. Our results showed that FEAST overall outperformed SourceTracker in sensitivity and stability, and was able to discern multi-source fecal contamination (mainly chicken feces) in ambient water bodies exposed to low fecal inputs. Consistent with our previous PCR/qPCR-based MST assays, FEAST analysis indicates that fecal pollution has been significantly mitigated through comprehensive environmental treatment by the local government. This study suggests that FEAST can be a powerful tool for accurately evaluating the contribution of multi-source fecal contamination in environmental water, facilitating environmental management.


Environmental Monitoring , Feces , Rivers , Water Microbiology , Water Pollution , Environmental Monitoring/methods , Feces/microbiology , Rivers/chemistry , Rivers/microbiology , Water/analysis , Water Pollution/analysis , Water Quality
5.
Folia Microbiol (Praha) ; 67(4): 573-590, 2022 Aug.
Article En | MEDLINE | ID: mdl-35305247

The escalation of antibiotic resistance has revitalized bacteriophage (phage) therapy. Recently, phage therapy has been gradually applied in medicine, agriculture, food, and environmental fields due to its distinctive features of high efficiency, specificity, and environmental friendliness compared to antibiotics. Likewise, phage therapy also holds great promise in controlling pathogenic bacteria in aquaculture. The application of phage therapy instead of antibiotics to eliminate pathogenic bacteria such as Vibrio, Pseudomonas, Aeromonas, and Flavobacterium and to reduce fish mortality in aquaculture has been frequently reported. In this context, the present review summarizes and analyzes the current status of phage therapy in aquaculture, focusing on the key parameters of phage application, such as phage isolation, selection, dosage, and administration modes, and introducing the strategies and methods to boost efficacy and restrain the emergence of resistance. In addition, we discussed the human safety, environmental friendliness, and techno-economic practicability of phage therapy in aquaculture. Finally, this review outlines the current challenges of phage therapy application in aquaculture from the perspectives of phage resistance, phage-mediated resistance gene transfer, and effects on the host immune system.


Bacteriophages , Phage Therapy , Vibrio , Animals , Anti-Bacterial Agents , Aquaculture/methods , Bacteriophages/genetics
6.
Appl Microbiol Biotechnol ; 105(13): 5299-5307, 2021 Jul.
Article En | MEDLINE | ID: mdl-34181033

Biological wastewater treatment (BWT) is currently the most widely applied approach for treating wastewater. The performance of BWT systems depends on the complex microbial communities they support. Although bacteriophages (phages), which are the viruses that infect prokaryotes, are recognized as the most abundant life entities, understanding of their ecological roles in BWT systems remains limited. Here, we review recent progress in phage-associated researches in BWT systems, including the interactions between phage and host, polyvalent phages, the influence of phage activity on BWT performance, and the potential applications of phage-based control for sludge bulking/foaming and pathogens. The challenges and perspectives of phage ecology are also outlined, which are expected to provide implications for future research and applications.Key points• Phage-host interactions in BWT systems are summarized• Impacts of phage activities on BWT performance• Potential applications of phages in BWT systems.


Bacteriophages , Water Purification , Bacteria , Sewage , Wastewater
...