Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Nat Commun ; 14(1): 2290, 2023 04 21.
Article En | MEDLINE | ID: mdl-37085479

Tissue homeostasis is maintained after stress by engaging and activating the hematopoietic stem and progenitor compartments in the blood. Hematopoietic stem cells (HSCs) are essential for long-term repopulation after secondary transplantation. Here, using a conditional knockout mouse model, we revealed that the RNA-binding protein SYNCRIP is required for maintenance of blood homeostasis especially after regenerative stress due to defects in HSCs and progenitors. Mechanistically, we find that SYNCRIP loss results in a failure to maintain proteome homeostasis that is essential for HSC maintenance. SYNCRIP depletion results in increased protein synthesis, a dysregulated epichaperome, an accumulation of misfolded proteins and induces endoplasmic reticulum stress. Additionally, we find that SYNCRIP is required for translation of CDC42 RHO-GTPase, and loss of SYNCRIP results in defects in polarity, asymmetric segregation, and dilution of unfolded proteins. Forced expression of CDC42 recovers polarity and in vitro replating activities of HSCs. Taken together, we uncovered a post-transcriptional regulatory program that safeguards HSC self-renewal capacity and blood homeostasis.


Hematopoietic Stem Cells , Heterogeneous-Nuclear Ribonucleoproteins , Proteostasis , Animals , Mice , Gene Expression Regulation , Hematopoietic Stem Cells/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Mice, Knockout , Proteostasis/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
2.
Cancer Cell ; 41(4): 726-739.e11, 2023 04 10.
Article En | MEDLINE | ID: mdl-36898380

Acute myeloid leukemia (AML) is a hematologic malignancy for which several epigenetic regulators have been identified as therapeutic targets. Here we report the development of cereblon-dependent degraders of IKZF2 and casein kinase 1α (CK1α), termed DEG-35 and DEG-77. We utilized a structure-guided approach to develop DEG-35 as a nanomolar degrader of IKZF2, a hematopoietic-specific transcription factor that contributes to myeloid leukemogenesis. DEG-35 possesses additional substrate specificity for the therapeutically relevant target CK1α, which was identified through unbiased proteomics and a PRISM screen assay. Degradation of IKZF2 and CK1α blocks cell growth and induces myeloid differentiation in AML cells through CK1α-p53- and IKZF2-dependent pathways. Target degradation by DEG-35 or a more soluble analog, DEG-77, delays leukemia progression in murine and human AML mouse models. Overall, we provide a strategy for multitargeted degradation of IKZF2 and CK1α to enhance efficacy against AML that may be expanded to additional targets and indications.


Casein Kinase Ialpha , Leukemia, Myeloid, Acute , Animals , Humans , Mice , Casein Kinase Ialpha/genetics , Casein Kinase Ialpha/metabolism , Hematopoiesis , Ikaros Transcription Factor/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Transcription Factors
...