Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Exp Neurol ; 369: 114532, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37689231

RESUMEN

Cerebral ischemia is a serious disease characterized by brain tissue ischemia and hypoxic necrosis caused by the blockage of blood vessels within the central nervous system. Although stem cell therapy is a promising approach for treating ischemic stroke, the inflammatory, oxidative, and hypoxic environment generated by cerebral ischemia greatly reduces the survival and therapeutic effects of transplanted stem cells. Endothelial colony-forming cells (ECFCs) are a class of precursor cells with strong proliferative potential that can migrate and differentiate directly into mature vascular endothelial cells. Consequently, ECFCs can exert significant therapeutic and reparative effects in diseases associated with vascular injury. Monocyte chemoattractant protein-induced protein 1 (MCPIP-1) exerts multiple biological effects; however, no studies have yet reported its role in the angiogenic function of ECFCs. In this study, we performed Proteome Profiler™ Human Angiogenesis Antibody arrays and tandem mass tag protein profiling to investigate the effect of MCPIP-1 on ECFCs. We demonstrated that MCPIP-1 knockdown enhanced the proliferation, migration, and in vivo and in vitro angiogenic capacity of ECFCs by upregulating the transferrin receptor-activated AKT/m-TOR signaling pathway to promote cellular trophic factor secretion. Furthermore, we found that the lateral ventricular transplantation of ECFCs with lentiviral MCPIP-1 knockdown into mice with middle cerebral artery occlusion increased serum vacular endothelial growth factor(VEGF), angiopoietin-1, and HIF-1a levels, enhanced neovascularization and neurogenesis in the ischemic penumbra, reduced the size of cerebral infarcts, and promoted neurological recovery. Together, these findings suggest new avenues for enhancing the therapeutic efficacy of ECFCs.


Asunto(s)
Isquemia Encefálica , Células Endoteliales , Neovascularización Fisiológica , Animales , Humanos , Ratones , Isquemia Encefálica/metabolismo , Células Cultivadas , Células Endoteliales/metabolismo , Isquemia/metabolismo , Isquemia/terapia , Neovascularización Fisiológica/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
2.
Cell Commun Signal ; 20(1): 125, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35982465

RESUMEN

BACKGROUND: Pyroptosis, especially microglial pyroptosis, may play an important role in central nervous system pathologies, including traumatic brain injury (TBI). Transplantation of mesenchymal stem cells (MSCs), such as human umbilical cord MSCs (hUMSCs), has been a focus of brain injury treatment. Recently, MSCs have been found to play a role in many diseases by regulating the pyroptosis pathway. However, the effect of MSC transplantation on pyroptosis following TBI remains unknown. Tumor necrosis factor α stimulated gene 6/protein (TSG-6), a potent anti-inflammatory factor expressed in many cell types including MSCs, plays an anti-inflammatory role in many diseases; however, the effect of TSG-6 secreted by MSCs on pyroptosis remains unclear. METHODS: Mice were subjected to controlled cortical impact injury in vivo. To assess the time course of pyroptosis after TBI, brains of TBI mice were collected at different time points. To study the effect of TSG-6 secreted by hUMSCs in regulating pyroptosis, normal hUMSCs, sh-TSG-6 hUMSCs, or different concentrations of rmTSG-6 were injected intracerebroventricularly into mice 4 h after TBI. Neurological deficits, double immunofluorescence staining, presence of inflammatory factors, cell apoptosis, and pyroptosis were assessed. In vitro, we investigated the anti-pyroptosis effects of hUMSCs and TSG-6 in a lipopolysaccharide/ATP-induced BV2 microglial pyroptosis model. RESULTS: In TBI mice, the co-localization of Iba-1 (marking microglia/macrophages) with NLRP3/Caspase-1 p20/GSDMD was distinctly observed at 48 h. In vivo, hUMSC transplantation or treatment with rmTSG-6 in TBI mice significantly improved neurological deficits, reduced inflammatory cytokine expression, and inhibited both NLRP3/Caspase-1 p20/GSDMD expression and microglial pyroptosis in the cerebral cortices of TBI mice. However, the therapeutic effect of hUMSCs on TBI mice was reduced by the inhibition of TSG-6 expression in hUMSCs. In vitro, lipopolysaccharide/ATP-induced BV2 microglial pyroptosis was inhibited by co-culture with hUMSCs or with rmTSG-6. However, the inhibitory effect of hUMSCs on BV2 microglial pyroptosis was significantly reduced by TSG-6-shRNA transfection. CONCLUSION: In TBI mice, microglial pyroptosis was observed. Both in vivo and in vitro, hUMSCs inhibited pyroptosis, particularly microglial pyroptosis, by regulating the NLRP3/Caspase-1/GSDMD signaling pathway via TSG-6. Video Abstract.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Moléculas de Adhesión Celular/metabolismo , Células Madre Mesenquimatosas , Adenosina Trifosfato/metabolismo , Animales , Lesiones Traumáticas del Encéfalo/patología , Lesiones Traumáticas del Encéfalo/terapia , Caspasa 1/metabolismo , Humanos , Lipopolisacáridos/farmacología , Células Madre Mesenquimatosas/metabolismo , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
3.
Exp Neurol ; 353: 114081, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35405119

RESUMEN

Increasing evidence highlights the importance of gut microbiota and its metabolites as an environmental factor affecting ischemic stroke. However, the role of microbial indole metabolites in ischemic stroke remains largely unknown. Here, we evaluated the effects and the underlying mechanism of indole-3-propionic acid (IPA) in a mouse model of acute middle cerebral artery occlusion (MCAO) and the mechanisms underlying these effects. We collected blood samples and evaluated serum indole derivatives levels using ultra-performance liquid chromatography with tandem mass spectrometry (UPLC-MS) in 8-10-week-old male C57 mice undergoing MCAO or sham. Intragastric IPA administration (400 µg/20 g/d) was performed in mice with MCAO, and its effects and mechanisms were assessed. We found that the serum IPA levels were significantly lower in mice with MCAO than in sham-treated subjects. 16S rRNA gene sequencing revealed that IPA treatment ameliorated the MCAO-induced alterations of the gut microbiome structure, specifically reshaping the microbial community composition in mice with MCAO to resemble that in the mice from the control group, with an increase in the abundance of probiotics and a decrease in the abundance of harmful bacteria. IPA repaired the integrity of the intestinal barrier and regulated the activities of regulatory T cells (Tregs) and Th17 cells in the gut-associated lymphoid tissue. Intragastric IPA administration effectively alleviated neuroinflammation, neurological impairment and brain infarction. Of note, Tregs in the IPA treatment group inhibited A1 reactive astrogliosis in vitro. The beneficial effects of IPA are thus mediated by the gut microbiota, which could enable the development of prebiotics for microbiome-based treatments for ischemic stroke.


Asunto(s)
Lesiones Encefálicas , Accidente Cerebrovascular Isquémico , Animales , Cromatografía Liquida , Modelos Animales de Enfermedad , Humanos , Indoles/metabolismo , Indoles/farmacología , Indoles/uso terapéutico , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Masculino , Ratones , Propionatos , ARN Ribosómico 16S/genética , Espectrometría de Masas en Tándem
4.
Front Genet ; 13: 668696, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35222524

RESUMEN

Purpose: The pathogenesis of thymoma (THYM) remains unclear, and there is no uniform measurement standard for the complexity of THYM derived from different thymic epithelial cells. Consequently, it is necessary to develop novel biomarkers of prognosis estimation for patients with THYM. Methods: Consensus clustering and single-sample gene-set enrichment analysis were used to divide THYM samples into different immunotypes. Differentially expressed genes (DEGs) between those immunotypes were used to do the Kyoto Encyclopedia of Genes and Genomes analysis, Gene Ontology annotations, and protein-protein interaction network. Furthermore, the survival-related DEGs were used to construct prognostic model with lasso regression. The model was verified by survival analysis, receiver operating characteristic curve, and principal component analysis. Furthermore, the correlation coefficients of stemness index and riskscore, tumor mutation burden (TMB) and riskscore, drug sensitivity and gene expression were calculated with Spearman method. Results: THYM samples were divided into immunotype A and immunotype B. A total of 707 DEGs were enriched in various cancer-related or immune-related pathways. An 11-genes signature prognostic model (CELF5, ODZ1, CD1C, DRP2, PTCRA, TSHR, HKDC1, KCTD19, RFX8, UGT3A2, and PRKCG) was constructed from 177 survival-related DEGs. The prognostic model was significantly related to overall survival, clinical features, immune cells, TMB, and stemness index. The expression of some genes were significantly related to drug sensitivity. Conclusion: For the first time, a prognostic model of 11 genes was identified based on the immune microenvironment in patients with THYM, which may be helpful for diagnosis and prediction. The associated factors (immune microenvironment, mutation status, and stemness) may be useful for exploring the mechanisms of THYM.

5.
Aging (Albany NY) ; 13(2): 3060-3079, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33479185

RESUMEN

To investigate the therapeutic mechanism of action of transplanted stem cells and develop exosome-based nanotherapeutics for ischemic stroke, we assessed the effect of exosomes (Exos) produced by human umbilical cord mesenchymal stem cells (hUMSCs) on microglia-mediated neuroinflammation after ischemic stroke. Our results found that injected hUMSC-Exos were able to access the site of ischemic damage and could be internalized by cells both in vivo and in vitro. In vitro, treatment with hUMSC-Exos attenuated microglia-mediated inflammation after oxygen-glucose deprivation (OGD). In vivo results demonstrated that treatment with hUMSC-Exos significantly reduced infarct volume, attenuated behavioral deficits, and ameliorated microglia activation, as measured three days post-transient brain ischemia. Furthermore, miR-146a-5p knockdown (miR-146a-5p k/d Exos) partially reversed the neuroprotective effect of hUMSC-Exos. Our mechanistic study demonstrated that miR-146a-5p in hUMSC-Exos reduces microglial-mediated neuroinflammatory response through IRAK1/TRAF6 pathway. We conclude that miR-146a-5p derived from hUMSC-Exos can attenuate microglia-mediated neuroinflammation and consequent neural deficits following ischemic stroke. These results elucidate a potential therapeutic mechanism of action of mesenchymal stem cells and provide evidence that hUMSC-Exos represent a potential cell-free therapeutic option for ischemic stroke.


Asunto(s)
Exosomas/metabolismo , Inflamación/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Células Madre Mesenquimatosas/metabolismo , MicroARNs/metabolismo , Microglía/metabolismo , Cordón Umbilical/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Transducción de Señal/fisiología
6.
Brain Res ; 1724: 146422, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31472111

RESUMEN

Microglia are the primary cells that exert immune function in the central nervous system (CNS), and they play an important role in the pathogenesis and progression of neuroinflammation-related diseases. Mesenchymal stem cells (MSCs) have been demonstrated to promote functional recovery in many neurological diseases. The mechanisms underlying this may be that MSCs can reduce inflammatory responses through various soluble factors. Among these factors, tumor necrosis factor-α-induced gene/protein 6 (TSG-6) is a key factor influencing MSCs immunomodulatory properties; however, the precise mechanisms underlying the anti-inflammatory effects are not fully understood. Here, we aim to investigate the potential effects of MSCs on neuroinflammation and to reveal the underlying mechanisms. First, we confirmed that administration of MSCs could inhibit the lipopolysaccharide (LPS)-induced neuroinflammatory responses in a mouse model. Then, we found that MSCs promoted M2 polarization and inhibited M1 polarization both in vivo and in vitro. Moreover, we demonstrated that the effect of MSCs on microglial polarization was dependent on TSG-6. This study demonstrated that MSCs promoted M2 polarization of microglia via TSG-6, thus conferring anti-neuroinflammatory effects.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Células Madre Mesenquimatosas/metabolismo , Microglía/efectos de los fármacos , Animales , Moléculas de Adhesión Celular/inmunología , Polaridad Celular/efectos de los fármacos , Polaridad Celular/fisiología , Células Cultivadas , Modelos Animales de Enfermedad , Inflamación , Lipopolisacáridos/farmacología , Macrófagos/inmunología , Masculino , Trasplante de Células Madre Mesenquimatosas/métodos , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Neuroinmunomodulación/efectos de los fármacos
7.
Stem Cells Dev ; 28(8): 497-514, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30739594

RESUMEN

Recent studies have indicated that stem cell transplantation may be effective in the treatment of ischemic stroke. Therefore, we performed a meta-analysis to evaluate the safety and efficacy of stem cell therapy for ischemic stroke in preclinical and clinical studies. In accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we searched the PubMed, Cochrane Library, Embase, Web of science, and Ovid databases from inception through May 2018. A total of 11 preclinical studies-18 independent interventions were ultimately included. Similarly, 11 clinical studies were finally included. Two authors independently screened trials. Lesion volume and modified neurological severity scores (mNSSs) were regarded as outcome measures for preclinical studies. The composite weighted mean [95% confidence interval (CI)] effect sizes for lesion volume, percentage of lesion volume, and mNSSs were -46.59 (-62.04 to -31.15; P < 0.001), -13.18 (-25.62 to -0.73; P = 0.04), and -1.85 (-2.17 to -1.53; P < 0.001), respectively. Our analysis revealed that all three outcomes were significantly more favorable in the stem cell group than in the control group. Barthel index (BI) values, modified Rankin scale (mRS) scores, National Institutes of Health Stroke Scale (NIHSS) scores, and Fugl-Meyer assessment (FMA) scores were regarded as outcome measures for human studies. Our results were as follows: NIHSS [mean differences, MDs = -2.57, 95% CI (-3.45 to -1.68), I2 = 51%, P < 0.001]; BI [MD = 7.93, 95% CI (3.11 to 12.75), I2 = 59%, P = 0.001]; mRS [MD = -0.53, 95% CI (-0.73 to -0.28), I2 = 0%, P < 0.001]; FMA [MD = 5.50, 95% CI (2.05 to 8.95), I2 = 15%, P = 0.002]. These results suggest that stem cell transplantation was associated with significantly better outcomes than control treatment. Adverse reactions such as mild headache and fever resolved shortly after treatment. Stem cell transplantation can significantly improve neurological deficits and quality of life in patients with ischemic stroke, without severe adverse reactions. Our results also suggest that such treatment is most effective when provided earlier and through the intravenous route.


Asunto(s)
Isquemia Encefálica/terapia , Trasplante de Células Madre/efectos adversos , Trasplante de Células Madre/métodos , Accidente Cerebrovascular/terapia , Animales , Isquemia Encefálica/epidemiología , Ensayos Clínicos como Asunto/estadística & datos numéricos , Estudios de Evaluación como Asunto , Humanos , Daño por Reperfusión/epidemiología , Daño por Reperfusión/terapia , Trasplante de Células Madre/estadística & datos numéricos , Accidente Cerebrovascular/epidemiología , Resultado del Tratamiento
8.
Exp Neurol ; 313: 49-59, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30213507

RESUMEN

Bone marrow-derived mesenchymal stem cells (BMSCs) exhibit potential regenerative effects on the injured brain. However, these effects are constrained by their limited ability to migrate to the injured site. Oncostatin M (OSM) has been shown to affect the proliferation and migration of mesenchymal stem cells. Therefore, in the present study, we explored whether OSM improves BMSC migration and secretion of growth factors and cytokines in a rat middle cerebral artery occlusion (MCAO) stroke model. The effect of OSM on the proliferation and apoptosis of rat BMSCs was first assessed in vitro, and the gene and secretion levels of factors related to cell nutrition and migration, such as SDF-1 and VEGF, were detected. To further explore underlying pathways triggered by OSM, BMSCs were treated with OSM in the presence or absence of inhibitors of the STAT3 and ERK pathways. Effects of OSM on SDF-1 expression in astrocytes and BMSC migration were also evaluated. In the rat MCAO model, OSM secretion levels were detected in the brain for up to 72 h after model establishment. Ventricle injection of OSM alone or OSM combined with caudal vein graft of BMSCs was then performed in MCAO stroke rats. After 72 h, production of SDF-1 and grafted BMSCs was detected in the lesion areas of the brain, and the nerve function score was evaluated. We found that the production of OSM continually increased in the brains of MCAO rats from 12 h to 72 h. OSM significantly upregulated SDF-1 in BMSCs via the STAT3 and ERK pathways and significantly promoted the expression of VEGF and MMP-2. OSM also promoted the secretion of SDF-1 in astrocytes through the STAT3 and ERK pathways to in turn enhance BMSC migration. Combination treatment with OSM and BMSCs in MCAO rats increased the migration efficiency of BMSCs in the brain, which significantly improved neurofunctional recovery while reducing the expression of inflammatory mediators and promoting the secretion of nutrition factors. Overall, these results show that OSM is highly expressed in the brains of MCAO stroke rats and can upregulate SDF-1 to promote BMSC migration. Thus, combination treatment with OSM and BMSCs improves the graft efficiency of BMSCs and neurofunctional recovery.


Asunto(s)
Células de la Médula Ósea/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Quimiocina CXCL12/biosíntesis , Inhibidores de Crecimiento/farmacología , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Oncostatina M/farmacología , Animales , Apoptosis/efectos de los fármacos , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Inhibidores de Crecimiento/metabolismo , Inhibidores de Crecimiento/uso terapéutico , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Trasplante de Células Madre Mesenquimatosas , Oncostatina M/metabolismo , Oncostatina M/uso terapéutico , Ratas , Ratas Sprague-Dawley , Recuperación de la Función , Factor de Transcripción STAT3/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología , Regulación hacia Arriba/efectos de los fármacos
9.
Oncoimmunology ; 7(2): e1391973, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29308321

RESUMEN

Tumor initiating cells or cancer stem cells (CSCs) play an important role in the initiation, development, metastasis, and recurrence of tumors. However, traditional therapies have limited effects against CSCs and targeting these cells is crucial when developing new therapeutic strategies against cancer. One potentially targetable factor is CD47, a member of the immunoglobulin superfamily. This protein acts as an anti-phagocytic "don't eat me" signal and is often found expressed by cancer cells, particularly CSCs. CD47 functions by activating signal regulatory protein-α (SIRP-α) expressed on macrophages, preventing phagocytosis. However, the role of CD47 in glioma stem cells (GSCs) has been not been thoroughly investigated. Our study therefore examined the expression and function of this protein in glioma cells and GSCs. We found that CD47 was highly expressed on glioma cells, especially GSCs, and that expression associated with worse clinical outcomes. We also found that CD47+ glioma cells possessed stem/progenitor cell-like characteristics and knocking down CD47 expression resulted in a reduction in these characteristics. Treatment with anti-CD47 antibody led to increased phagocytosis of glioma cells and GSCs by macrophages. We next examined the effects of anti-CD47 antibody on glioma cells/GSCs in an immune competent mouse glioma model, revealing significant inhibition of tumor growth and prolonged survival times. Importantly, there were no apparent side effects in the animal model. In summary, we have shown that CD47 is a potentially safe and effective therapeutic target for glioma.

10.
Am J Transl Res ; 9(5): 2492-2499, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28559999

RESUMEN

Mesenchymal stem cell (MSC) transplantation is a promising therapeutic strategy for myocardial infarction. The survival rate of the grafted MSCs is limited by the conditions of hypoxia and low nutrient levels. In this study, we investigated the role of hypoxia-inducible factor 1 alpha (Hif-1α) in oxygen-glucose deprivation (OGD)-induced injury in MSCs. Hif-1α was overexpressed or suppressed in MSCs by transfection with a Hif-1α expressing vector or Hif-1α-specific siRNA, respectively. Then MSCs were exposed to OGD, and the changes in cell viability, cell cycle distribution and apoptosis were respectively monitored by MTT assay and flow cytometry. Additionally, expression levels of Beclin1, LC3 I and LC3 II, as well phosphorylation of PI3K, AKT and mTOR were detected by RT-PCR and Western blotting. The results indicated that Hif-1α overexpression improved cell viability, reduced G1 phase cells accumulation, and suppressed apoptosis under OGD condition (P<0.05). Beclin1 expression and the LC3 II/LC3 I ratio were increased by Hif-1α overexpression, and were decreased by Hif-1α knock-down (P<0.05). In addition, PI3K, AKT and mTOR were inactivated by Hif-1α overexpression, and phosphorylated by Hif-1α knock-down (P<0.05). In conclusion, these data suggest that Hif-1α overexpression protects MSCs from OGD-induced injury via a mechanism in which autophagy and PI3K/AKT/mTOR pathway are implicated.

11.
Am J Transl Res ; 9(3): 1521-1529, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28386377

RESUMEN

Mesenchymal stem cells (MSCs) are ideal materials for cell therapy. Research has indicated that hypoxia benefits MSC survival, but little is known about the underlying mechanism. This study aims to uncover potential mechanisms involving hypoxia inducible factor 1α (HIF1A) to explain the promoted MSC survival under hypoxia. MSCs were obtained from Sprague-Dawley rats and cultured under normoxia or hypoxia condition. The overexpression vector or small interfering RNA of Hif1a gene was transfected to MSCs, after which cell viability, apoptosis and expression of HIF1A were analyzed by MTT assay, flow cytometry, qRT-PCR and Western blot. Factors in p53 pathway were detected to reveal the related mechanisms. Results showed that hypoxia elevated MSCs viability and up-regulated HIF1A (P < 0.05) as previously reported. HIF1A overexpression promoted viability (P < 0.01) and suppressed apoptosis (P < 0.001) under normoxia. Correspondingly, HIF1A knockdown inhibited viability (P < 0.05) and promoted apoptosis (P < 0.01) of MSCs under hypoxia. Expression analysis suggested that p53, phosphate-p53 and p21 were repressed by HIF1A overexpression and promoted by HIF1A knockdown, and B-cell CLL/lymphoma 2 (BCL2) expression had the opposite pattern (P < 0.05). These results suggest that HIF1A may improve viability and suppress apoptosis of MSCs, implying the protective effect of HIF1A on MSC survival under hypoxia. The underlying mechanisms may involve the HIF1A-suppressed p53 pathway. This study helps to explain the mechanism of MSC survival under hypoxia, and facilitates the application of MSCs in cell therapy.

12.
Front Mol Neurosci ; 10: 80, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28424584

RESUMEN

Bone mesenchymal stem cells (BMSCs) death after transplantation is a serious obstacle impacting on the outcome of cell therapy for cerebral infarction. This study was aimed to investigate whether modification of BMSCs with hypoxia-inducible factor 1α (Hif-1α) could enhance the survival of the implanted BMSCs. BMSCs were isolated from Wistar rats, and were infected with Hif-1α-GFP lentiviral vector or Hif-1α siRNA. The modified BMSCs were exposed to oxygen-glucose deprivation (OGD) condition, cellular viability and apoptosis were then assessed. An inhibitor of AMPK (compound C) was used to detect whether AMPK and mTOR were implicated in the functions of Hif-1α on BMSCs survival. Besides, ultrastructure of BMSCs was observed and the expression of autophagy markers was measured. The modified BMSCs were transplanted into middle cerebral artery occlusion (MCAO) model of rats, and the cerebral infarction volume and neurological function was assessed. The results indicated that Hif-1α overexpression protected OGD induced injury by promoting cellular viability and inhibiting apoptosis. AMPK was activated while mTOR was inactivated by Hif-1α overexpression, and that might be through which Hif-1α functioned BMSCs survival. Hif-1α overexpression promoted autophagy; more important, compound C abolished the induction of Hif-1α on autophagy. Transplantation of the overexpressed Hif-1α of BMSCs into the MCAO rats reduced brain infarct volume and improved neurobehavioral outcome; besides, it inhibited pro-inflammatory cytokines generation while promoted neurotrophin secretion. In conclusion, Hif-1α might be contributed in the survival of BMSCs by regulating the activation of AMPK and mTOR, as well as by promoting autophagy.

13.
Front Cell Neurosci ; 10: 283, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28018176

RESUMEN

In this study, we investigated interactions among microglia (MG), bone marrow mesenchymal stem cells (BMSCs) and neurons in cerebral ischemia and the potential mechanisms using an in vitro oxygen-glucose deprivation (OGD) model. Rat BMSCs were incubated with conditioned medium (CM) from in vitro cultures of OGD-activated rat MG and murine BV2 MG cells. Effects of glial cell-derived neurotrophic factor (GDNF) on rat neuron viability, apoptosis, lactate dehydrogenase (LDH) leakage and mitochondrial membrane potential (MMP) were analyzed in this model. OGD-activated MG promoted GDNF production by BMSCs (P < 0.01). Tumor necrosis factor-α (TNFα), but not interleukin-6 (IL6) or interleukin 1ß (IL1ß), promoted GDNF production by BMSCs (P < 0.001). GDNF or CM pre-treated BMSCs elevated neuronal viability and suppressed apoptosis (P < 0.05 or P < 0.01); these effects were inhibited by the RET antibody. GDNF activated MEK/ERK and phosphoinositide-3-kinase (PI3K)/AKT signaling but not JNK/c-JUN. Furthermore, GDNF upregulated B cell lymphoma 2 (BCL2) and heat shock 60 kDa protein 1 (HSP60) levels, suppressed LDH leakage, and promoted MMP. Thus, activated MG produce TNFα to stimulate GDNF production by BMSCs, which prevents and repairs OGD-induced neuronal injury, possibly via regulating MEK/ERK and PI3K/AKT signaling. These findings will facilitate the prevention and treatment of neuronal injury by cerebral ischemia.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...