Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 12(21)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36364668

RESUMEN

Recently, as an alternative solution for overcoming the scaling-down limitations of logic devices with design length of less than 3 nm and enhancing DRAM operation performance, 3D heterogeneous packaging technology has been intensively researched, essentially requiring Si wafer polishing at a very high Si polishing rate (500 nm/min) by accelerating the degree of the hydrolysis reaction (i.e., Si-O-H) on the polished Si wafer surface during CMP. Unlike conventional hydrolysis reaction accelerators (i.e., sodium hydroxide and potassium hydroxide), a novel hydrolysis reaction accelerator with amine functional groups (i.e., 552.8 nm/min for ethylenediamine) surprisingly presented an Si wafer polishing rate >3 times higher than that of conventional hydrolysis reaction accelerators (177.1 nm/min for sodium hydroxide). This remarkable enhancement of the Si wafer polishing rate for ethylenediamine was principally the result of (i) the increased hydrolysis reaction, (ii) the enhanced degree of adsorption of the CMP slurry on the polished Si wafer surface during CMP, and (iii) the decreased electrostatic repulsive force between colloidal silica abrasives and the Si wafer surface. A higher ethylenediamine concentration in the Si wafer CMP slurry led to a higher extent of hydrolysis reaction and degree of adsorption for the slurry and a lower electrostatic repulsive force; thus, a higher ethylenediamine concentration resulted in a higher Si wafer polishing rate. With the aim of achieving further improvements to the Si wafer polishing rates using Si wafer CMP slurry including ethylenediamine, the Si wafer polishing rate increased remarkably and root-squarely with the increasing ethylenediamine concentration.

2.
Sci Rep ; 12(1): 3366, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35233019

RESUMEN

In this study, the chemical decomposition of a polyimide-film (i.e., a PI-film)-surface into a soft-film-surface containing negatively charged pyromellitic dianhydride (PMDA) and neutral 4,4'-oxydianiline (ODA) was successfully performed. The chemical decomposition was conducted by designing the slurry containing 350 nm colloidal silica abrasive and small molecules with amine functional groups (i.e., ethylenediamine: EDA) for chemical-mechanical planarization (CMP). This chemical decomposition was performed through two types of hydrolysis reactions, that is, a hydrolysis reaction between OH- ions or R-NH3+ (i.e., EDA with a positively charged amine groups) and oxygen atoms covalently bonded with pyromellitimide on the PI-film-surface. In particular, the degree of slurry adsorption of the PI-film-surface was determined by the EDA concentration in the slurry because of the presence of R-NH3+, that is, a higher EDA concentration resulted in a higher degree of slurry adsorption. In addition, during CMP, the chemical decomposition degree of the PI-film-surface was principally determined by the EDA concentration; that is, the degree of chemical composition was increased noticeably and linearly with the EDA concentration. Thus, the polishing-rate of the PI-film-surface increased notably with the EDA concentration in the CMP slurry.

3.
Sci Rep ; 11(1): 17736, 2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34489499

RESUMEN

Face-centered-cubic crystallized super-fine (~ 2 nm in size) wet-ceria-abrasives are synthesized using a novel wet precipitation process that comprises a Ce4+ precursor, C3H4N2 catalyst, and NaOH titrant for a synthesized termination process at temperature of at temperature of 25 °C. This process overcomes the limitations of chemical-mechanical-planarization (CMP)-induced scratches from conventional dry ceria abrasives with irregular surfaces or wet ceria abrasives with crystalline facets in nanoscale semiconductor devices. The chemical composition of super-fine wet ceria abrasives depends on the synthesis termination pH, that is, Ce(OH)4 abrasives at a pH of 4.0-5.0 and a mixture of CeO2 and Ce(OH)4 abrasives at a pH of 5.5-6.5. The Ce(OH)4 abrasives demonstrate better abrasive stability in the SiO2-film CMP slurry than the CeO2 abrasives and produce a minimum abrasive zeta potential (~ 12 mV) and a minimum secondary abrasive size (~ 130 nm) at the synthesis termination pH of 5.0. Additionally, the abrasive stability of the SiO2-film CMP slurry that includes super-fine wet ceria abrasives is notably sensitive to the CMP slurry pH; the best abrasive stability (i.e., a minimum secondary abrasive size of ~ 130 nm) is observed at a specific pH (6.0). As a result, a maximum SiO2-film polishing rate (~ 524 nm/min) is achieved at pH 6.0, and the surface is free of stick-and-slip type scratches.

4.
Biochem Biophys Res Commun ; 518(2): 286-293, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31427082

RESUMEN

The regulation of endothelial cell (EC) permeability is critical for the physiological homeostasis of blood vessels and tissues. The elevation of pro-inflammatory cytokines is highly associated with lesions, such as the increased vascular permeability of diabetic retinas. We have previously reported that interleukin-6 (IL-6) increases EC permeability through the downregulation of tight junction protein expression. Angiopoietin 1 (Ang1) has an anti-permeability function, but the effect of Ang1 on vascular permeability induced by inflammatory cytokines is unclear. In the present study, we investigated the effect of Ang1 on IL-6-induced EC permeability and its underlying molecular mechanisms. We demonstrated that Ang1 inhibited the IL-6-induced increase in EC permeability by inhibiting the reductions in the levels of tight junction protein ZO-1 and occludin, which was related to the decrease in vascular endothelial growth factor (VEGF) secretion through the inhibition of STAT3 activation by Ang1. Mechanistically, Ang1 induced the dissociation of the tyrosine phosphatase SHP-1 from the Tie2 receptor and increased the binding of SHP-1 to JAK1, JAK2, and STAT3, which are IL-6 downstream signaling proteins. We conclude that SHP-1 plays an important role in the Ang1-induced inhibition of JAK/STAT3 signaling. These results provide evidence for a potential beneficial role of Ang1 in suppressing the vascular permeability induced by the pro-inflammatory cytokine IL-6 in diabetic retinopathy.


Asunto(s)
Angiopoyetina 1/metabolismo , Células Endoteliales/metabolismo , Interleucina-6/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Células Cultivadas , Humanos , Interleucina-6/metabolismo , Permeabilidad
5.
FASEB J ; 32(5): 2324-2338, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29269397

RESUMEN

Pericytes (PCs) are crucial in maintaining the quiescence of endothelial cells (ECs) and the integrity of EC tight junctions. Especially in diabetic retinopathy (DR), PC loss is one of the early pathologic changes in capillaries of diabetic retinas. Thus, preventing PC loss is beneficial for attenuating vision impairment in patients with DR. Although many studies have revealed the mechanism of PC loss in retinas, little is known about the mechanisms that increase PC survival. We focused on the effect of ß-adrenergic receptor agonists (ß-agonists) on PC loss in diabetic retinas. In this study, ß-agonists increased the cell viability of PCs by increasing PC survival and proliferation. Mechanistically, ß-agonist-induced protein kinase B activation in PCs reduced PC apoptosis in response to various stimuli. ß2-agonists more potently increased PC survival than ß1-agonists. ß2-Agonist reduced vascular leakage and PC loss in retinas of mice with streptozotocin-induced diabetes. In cocultures of PCs and ECs, ß2-agonists restored the altered permeability and ZO-1 expression in ECs induced by PC loss. We concluded that ß-agonists, especially ß2-agonists, increase PC survival, thereby preventing diabetes-induced PC loss in retinas. These results provide a potential therapeutic benefit of ß-agonists for preventing PC loss in DR.-Yun, J.-H., Jeong, H.-S., Kim, K.-J., Han, M. H., Lee, E. H., Lee, K., Cho, C.-H. ß-Adrenergic receptor agonists attenuate pericyte loss in diabetic retinas through Akt activation.


Asunto(s)
Agonistas de Receptores Adrenérgicos beta 2/farmacología , Proliferación Celular/efectos de los fármacos , Diabetes Mellitus Experimental/tratamiento farmacológico , Retinopatía Diabética/tratamiento farmacológico , Pericitos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Retina/metabolismo , Animales , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Técnicas de Cocultivo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Retinopatía Diabética/metabolismo , Retinopatía Diabética/patología , Activación Enzimática/efectos de los fármacos , Humanos , Masculino , Ratones , Pericitos/patología , Retina/patología , Proteína de la Zonula Occludens-1/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA