Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
2.
Cell ; 185(14): 2495-2509.e11, 2022 07 07.
Article En | MEDLINE | ID: mdl-35764090

Plant fibers in byproduct streams produced by non-harsh food processing methods represent biorepositories of diverse, naturally occurring, and physiologically active biomolecules. To demonstrate one approach for their characterization, mass spectrometry of intestinal contents from gnotobiotic mice, plus in vitro studies, revealed liberation of N-methylserotonin from orange fibers by human gut microbiota members including Bacteroides ovatus. Functional genomic analyses of B. ovatus strains grown under permissive and non-permissive N-methylserotonin "mining" conditions revealed polysaccharide utilization loci that target pectins whose expression correlate with strain-specific liberation of this compound. N-methylserotonin, orally administered to germ-free mice, reduced adiposity, altered liver glycogenesis, shortened gut transit time, and changed expression of genes that regulate circadian rhythm in the liver and colon. In human studies, dose-dependent, orange-fiber-specific fecal accumulation of N-methylserotonin positively correlated with levels of microbiome genes encoding enzymes that digest pectic glycans. Identifying this type of microbial mining activity has potential therapeutic implications.


Citrus sinensis , Gastrointestinal Microbiome , Animals , Citrus sinensis/metabolism , Dietary Fiber , Gastrointestinal Microbiome/physiology , Germ-Free Life , Humans , Mice , Pectins/metabolism , Polysaccharides/metabolism , Serotonin/analogs & derivatives
3.
Cell ; 179(5): 1144-1159.e15, 2019 11 14.
Article En | MEDLINE | ID: mdl-31708126

The colonic epithelium can undergo multiple rounds of damage and repair, often in response to excessive inflammation. The responsive stem cell that mediates this process is unclear, in part because of a lack of in vitro models that recapitulate key epithelial changes that occur in vivo during damage and repair. Here, we identify a Hopx+ colitis-associated regenerative stem cell (CARSC) population that functionally contributes to mucosal repair in mouse models of colitis. Hopx+ CARSCs, enriched for fetal-like markers, transiently arose from hypertrophic crypts known to facilitate regeneration. Importantly, we established a long-term, self-organizing two-dimensional (2D) epithelial monolayer system to model the regenerative properties and responses of Hopx+ CARSCs. This system can reenact the "homeostasis-injury-regeneration" cycles of epithelial alterations that occur in vivo. Using this system, we found that hypoxia and endoplasmic reticulum stress, insults commonly present in inflammatory bowel diseases, mediated the cyclic switch of cellular status in this process.


Cell Culture Techniques/methods , Colon/pathology , Stem Cells/pathology , 3T3 Cells , Animals , Colitis/pathology , Epithelial Cells/drug effects , Epithelial Cells/pathology , Homeodomain Proteins/metabolism , Mice , Models, Biological , Oxygen/pharmacology , Regeneration/drug effects , Stem Cells/drug effects , Stress, Physiological/drug effects
4.
Cell ; 179(1): 59-73.e13, 2019 09 19.
Article En | MEDLINE | ID: mdl-31539500

Development of microbiota-directed foods (MDFs) that selectively increase the abundance of beneficial human gut microbes, and their expressed functions, requires knowledge of both the bioactive components of MDFs and the mechanisms underlying microbe-microbe interactions. Here, gnotobiotic mice were colonized with a defined consortium of human-gut-derived bacterial strains and fed different combinations of 34 food-grade fibers added to a representative low-fiber diet consumed in the United States. Bioactive carbohydrates in fiber preparations targeting particular Bacteroides species were identified using community-wide quantitative proteomic analyses of bacterial gene expression coupled with forward genetic screens. Deliberate manipulation of community membership combined with administration of retrievable artificial food particles, consisting of paramagnetic microscopic beads coated with dietary polysaccharides, disclosed the contributions of targeted species to fiber degradation. Our approach, including the use of bead-based biosensors, defines nutrient-harvesting strategies that underlie, as well as alleviate, competition between Bacteroides and control the selectivity of MDF components.


Bacteroides/genetics , Dietary Fiber/pharmacology , Gastrointestinal Microbiome/drug effects , Germ-Free Life/physiology , Microbial Interactions/drug effects , Polysaccharides/pharmacology , Proteomics/methods , Animals , Diet/methods , Dietary Fiber/metabolism , Feces/microbiology , Gastrointestinal Microbiome/physiology , Gene Expression Regulation, Bacterial/drug effects , Humans , Male , Mice , Mice, Inbred C57BL , Polysaccharides/metabolism
5.
Mol Cell ; 56(6): 808-18, 2014 Dec 18.
Article En | MEDLINE | ID: mdl-25435138

The structure of broken DNA ends is a critical determinant of the pathway used for DNA double-strand break (DSB) repair. Here, we develop an approach involving the hairpin capture of DNA end structures (HCoDES), which elucidates chromosomal DNA end structures at single-nucleotide resolution. HCoDES defines structures of physiologic DSBs generated by the RAG endonuclease, as well as those generated by nucleases widely used for genome editing. Analysis of G1 phase cells deficient in H2AX or 53BP1 reveals DNA ends that are frequently resected to form long single-stranded overhangs that can be repaired by mutagenic pathways. In addition to 3' overhangs, many of these DNA ends unexpectedly form long 5' single-stranded overhangs. The divergence in DNA end structures resolved by HCoDES suggests that H2AX and 53BP1 may have distinct activities in end protection. Thus, the high-resolution end structures obtained by HCoDES identify features of DNA end processing during DSB repair.


Chromosomes, Human/genetics , Sequence Analysis, DNA/methods , Base Sequence , Cells, Cultured , DNA Breaks, Double-Stranded , Humans
...