Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PeerJ ; 12: e17221, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638157

RESUMEN

Background: Soil organic nitrogen (SON) levels can respond effectively to crop metabolism and are directly related to soil productivity. However, simultaneous comparisons of SON dynamics using isotopic tracing in diverse agroecosystems are lacking, especially in karst areas with fragile ecology. Methods: To better understand the response of SON dynamics to environmental changes under the coupling of natural and anthropogenic disturbances, SON contents and their stable N isotope (δ15NSON) compositions were determined in abandoned cropland (AC, n = 16), grazing shrubland (GS, n = 11), and secondary forest land (SF, n = 20) from a typical karst area in southwest China. Results: The SON contents in the SF (mean: 0.09%) and AC (mean: 0.10%) profiles were obviously lower than those in the GS profile (mean: 0.31%). The δ15NSON values ranged from 4.35‰-7.59‰, 3.79‰-7.23‰, and 1.87‰-7.08‰ for the SF, AC, and GS profiles, respectively. Decomposition of organic matter controlled the SON variations in the secondary forest land by the covered vegetation, and that in the grazing shrubland by goat excreta. δ15NSON ranges were controlled by the covered vegetation, and the δ15NSON fractionations during SON transformation were influenced by microorganisms in all surface soil. Conclusions: The excreta of goats that contained 15N-enriched SON induced a heavier δ15NSON composition in the grazed shrubland. Long-term cultivation consumes SON, whereas moderate grazing increases SON content to reduce the risk of soil degradation. This study suggests that optimized crop-livestock production may benefit the sustainable development of agroecosystems in karst regions.


Asunto(s)
Nitrógeno , Suelo , Nitrógeno/análisis , Suelo/química , Bosques , Ecología , China
2.
PeerJ ; 11: e15249, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37214105

RESUMEN

Background: The loss of soil organic carbon (SOC) under land degradation threatens crop production and reduces soil fertility and stability, which is more reflected in eco-sensitive environments. However, fewer studies simultaneously compared SOC variations and δ13CSOC compositions under diverse land uses, especially in karst areas. Methods: Soil profiles from two agricultural lands and a secondary forest land were selected to analyze SOC contents and their stable isotope composition (δ13CSOC) in a typical karst area located in southwest China to understand the response of the SOC cycle to land degradation. Moreover, the relationships between SOC contents and mean weight diameter (MWD) and soil erodibility (K) factor were comprehensively analyzed for assessing the response of SOC to soil degradation risk. Results: The mean SOC content was found to be the lowest in abandoned cropland (6.91 g/kg), followed by secondary forest land (9.31 g/kg) and grazing shrubland (34.80 g/kg), respectively. Meanwhile, the δ13CSOC values exhibited the following trend: secondary forest land (mean: -23.79‰) ≈abandoned cropland (mean: -23.76‰) >shrubland (mean: -25.33‰). The isotopic tracing results suggested that plant litter was the main contributor to SOC in the secondary forest land. Whereas abundant nitrogen from goat feces enhanced plant productivity and resulted in additional accumulation of SOC in the grazing shrubland. Conversely, long-term cultivation led to the depletion of SOC sequestration by the loss of calcium. In surface soils, the fractionation of δ13CSOC were considerably affected by the decomposition of SOC by soil microorganisms and covered vegetation rather than agricultural influences. Conclusions: The findings indicate that the cycling of SOC and soil stability in the calcareous soil of southwest China are largely regulated by different land uses and the presence of vegetation cover. The depletion of SOC and soil physical degradation pose significant challenges for abandoned cropland, particularly in the karst area, where land degradation is inevitable. Nevertheless, moderate grazing enhances SOC levels, which is beneficial to the land fertility maintenance in the karst region. Therefore, more emphasis should be placed on the cultivation methods and management strategies for abandoned cropland in the karst area.


Asunto(s)
Carbono , Suelo , Carbono/análisis , Agricultura , Ciclo del Carbono , China
3.
Environ Res ; 229: 115981, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37100365

RESUMEN

Alpine rivers originating from the Tibetan Plateau (TP) contain large amounts of water resources with high environmental sensitivity and eco-fragility. To clarify the variability and controlling factors of hydrochemistry on the headwater of the Yarlung Tsangpo River (YTR), the large river basin with the highest altitude in the world, water samples from the Chaiqu watershed were collected in 2018, and major ions, δ2H and δ18O of river water were analyzed. The values of δ2H (mean: -141.4‰) and δ18O (mean: -18.6‰) were lower than those in most Tibetan rivers, which followed the relationship: δ2H = 4.79*δ18O-52.2. Most river deuterium excess (d-excess) values were lower than 10‰ and positively correlated with altitude controlled by regional evaporation. The SO42- in the upstream, the HCO3- in the downstream, and the Ca2+ and Mg2+ were the controlling ions (accounting for >50% of the total anions/cations) in the Chaiqu watershed. Stoichiometry and principal component analysis (PCA) results revealed that sulfuric acid stimulated the weathering of carbonates and silicates to produce riverine solutes. This study promotes understanding water source dynamics to inform water quality and environmental management in alpine regions.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Químicos del Agua , Tibet , Monitoreo del Ambiente/métodos , Ríos , Calidad del Agua , Carbonatos/análisis , Contaminantes Químicos del Agua/análisis
4.
Sci Total Environ ; 856(Pt 1): 158929, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36152861

RESUMEN

Iron (Fe) isotopes can effectively unveil the Fe cycle mechanisms under redox and biological conditions during the weathering and pedogenic processes. Fe contents and Fe isotope compositions (defined as δ56Fe) in the soil profiles under secondary forest land, abandoned cropland and shrubland were investigated in a typical karst area in Southwest China. The results showed that the Fe content ranged from 23.92 to 38.56 g/kg, 21.92 to 33.02 g/kg and 12.98 to 27.93 g/kg, and the δ56Fe levels varied from -0.48 ‰ to 0.21 ‰, -0.24 ‰ to 0.11 ‰ and - 0.11 ‰ to 0.16 ‰ from the secondary forest land, abandoned cropland and shrubland, respectively. The correlation analysis results showed that Fe transportation and isotopic fractionation were regulated by the redox processes through soil pH and soil organic matter (SOM) in the abandoned cropland and shrubland. Heavier Fe isotope may be accumulated in the deeper soil of secondary forest land due to Fe-oxide precipitation. The Fe isotope fractionations were greatly altered by soil organic carbon (SOC) in surface soils due to negative surface charges. Soil pH also plays a key role in enriching lighter Fe in a medium-acidic environment (shrubland) by ligand-controlled dissolution and reductive dissolution. Long-term cultivation in abandoned cropland and grazing in shrubland reshaped the Fe cycle in soil profiles by changing soil pH and SOC contents. However, the similar values of δ56Fe in different land use soils indicated that the agricultural activities have no significant impact on the Fe transformation in karst soil ecosystems. The land utilization is reasonable in the Yinjiang County. This study provided effective data and insightful analysis to understand the Fe cycle processes in the karst soils under varied land uses.


Asunto(s)
Carbono , Suelo , Suelo/química , Carbono/análisis , Ecosistema , Agricultura , China
5.
PeerJ ; 10: e12716, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35178289

RESUMEN

BACKGROUND: Soil heavy metals (HMs) under different land-use types have diverse effects, which may trigger the ecological risk. To explore the potential sources of HMs in karst soils, the spatial distribution and geochemical behavior of HMs based on different land-use types are employed in this study. METHODS: Soil samples (n = 47) were collected in three suites of karst soil profiles from the secondary forest, abandoned cropland and shrubland in Yinjiang, Southwest China. The concentrations of Ni, Mn, Cr, Pb, Cd and Mo were determined to give a comprehensive understanding of the possible sources of these HMs and evaluate the potential ecological risk in Yinjiang County. RESULTS: The mean concentrations of HMs in all profiles followed the same order: Mn > Cr > Ni > Pb > Mo > Cd. Meanwhile, the concentrations of most HMs roughly increased with the depth. Additionally, the concentrations of HMs were mostly correlated with soil pH and SOC, rather than with clay and silt proportions. By contrast, with the enrichment factors (EF), geo-accumulation (Igeo) and potential ecological risk index (PERI) of HMs in soil under different land-use types, the results indicated that these HMs exhibited non-pollution (Igeo < 0) and no ecological risk (PERI < 30) to human health in soils of Yinjiang County. CONCLUSIONS: The distribution of HMs is dominated by weathering in the karst area, and the effects of agricultural inputs on the enrichment of soil HMs in Yinjiang County are limited. This further state that the arrangement of the local agricultural structure is reasonable.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Humanos , Suelo/química , Cadmio , Plomo , Monitoreo del Ambiente/métodos , Contaminantes del Suelo/análisis , Metales Pesados/análisis , China , Medición de Riesgo
6.
Artículo en Inglés | MEDLINE | ID: mdl-33435431

RESUMEN

The geochemical characteristics of rare earth elements (REEs) can be employed to identify the anthropogenic and natural influence on the distributions of REEs in soils. A total of 47 soil samples from the three soil profiles of the secondary forest land, abandoned cropland, and shrubland in the Yinjiang county of Guizhou province, southwest China, were collected to determine the contents and distribution of REEs in the soil environment. The total REEs (ΣREE) contents in different soil profiles are in the following sequence: secondary forest land (mean: 204.59 mg·kg-1) > abandoned cropland (mean: 186.67 mg·kg-1) > shrubland (mean: 139.50 mg·kg-1). The ratios of (La/Gd)N and (Gd/Yb)N ranged from 0.62 to 1.00 and 1.18 to 2.16, which indicated that the enrichment of the medium rare earth elements (MREEs) was more obvious than that of the light rare earth elements (LREEs) and the heavy rare earth elements (HREEs). The phenomenon could be attributed to the preferential absorption of MREEs by fine particles and the substitution of Ca2+ by MREEs. Most soil samples were characterized by the negative Ce anomalies (anomalies values: 0.30-1.10) and positive Eu anomalies (anomalies values: 0.43-2.90). The contents of REEs in the profiles of secondary forest land and shrubland were mainly regulated by soil pH and Fe contents while clay content and agricultural activities were the main controlling factors in the soil profile of abandoned cropland. This study highlights the role of agricultural activities in affecting the distributions of REEs in karst soils, which could provide some insights for the protection of the soil environment.


Asunto(s)
Metales de Tierras Raras , Contaminantes del Suelo , Agricultura , China , Metales de Tierras Raras/análisis , Suelo , Contaminantes del Suelo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA