Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Anal Sci ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136850

RESUMEN

Emodin is an important anthraquinone compound with good anti-inflammatory activity in Chinese traditional medicine rhubarb. Detailed spatial distribution information in bio-tissues plays an important role in revealing the pharmacodynamics, toxicology and chemical mechanism of emodin. Herein, the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry imaging (MALDI-TOF-MSI) analytical method was established to obtain information on the spatial and temporal changes of emodin in multiple mouse tissue sections (heart, liver, spleen, lung, kidney, and brain) after intraperitoneal injection of emodin in mice. The measurements were accomplished in the negative ion mode in the range of m/z 250-285 Da with a spatial resolution on 40 µm. It was found that emodin was predominantly distributed in the arteriolar vascular region of the heart, the capsule region of the spleen, and the cortex of the kidney. Moreover, the MALDI-TOF-MSI result implied that emodin might be distributed in the brain. These more detailed spatial distribution information provides the significant reference for investigating the action mechanism of emodin, which cannot be obtained from conventional LC-MS analysis. The distribution trend of emodin in the results of MALDI-TOF-MSI analysis agreed with the ultra-performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) results well, demonstrating the complementarity and reliability of the established MALDI-TOF-MSI method. Our work provided a label-free molecular imaging method to investigate the precise spatial distribution of emodin in various organs, which prove great potential in studying the effective substances and mechanism of rhubarb.

2.
J Am Soc Mass Spectrom ; 35(8): 1756-1767, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39001840

RESUMEN

Cholesterol is a vital component of the central nervous system and tissues, and understanding its spatial distribution is crucial for biology, pathophysiology, and diagnostics. However, direct imaging of cholesterol using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) remains challenging and time-consuming due to the difficulty in ionizing the sterol molecule. To tackle this issue, a MALDI-MSI method is established for direct and rapid analysis of the spatial distribution of cholesterol in Alzheimer's disease (AD), different cancer tissues and organs via MALDI-MSI. This excellent imaging performance depends on the study and systemic optimization of various conditions that affect the imaging of MALDI-MSI. In this case, we report the distribution and levels of cholesterol across specific structures of the AD mouse brain and different tumor tissue and organs. According to the results, the content of cholesterol in the AD mouse cerebellum, especially in the arborvitae, was significantly higher than that in the wild type (WT) model. Furthermore, we successfully visualize the distribution of cholesterol in other organs, such as the heart, liver, spleen, kidney, pancreas, as well as tumor tissues parenchyma and interstitium using MALDI-MSI. Notably, the attribution of cholesterol MS/MS hydrocarbon fragments was systematically investigated. Our presented optimization strategy and established MALDI-MSI method can be easily generalized for different animal tissues or live samples, thereby facilitating the potential for applications of MALDI-MSI in clinical, medical and biological research.


Asunto(s)
Enfermedad de Alzheimer , Colesterol , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Colesterol/análisis , Colesterol/metabolismo , Ratones , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Ratones Endogámicos C57BL , Neoplasias/diagnóstico por imagen , Neoplasias/metabolismo , Neoplasias/química , Ratones Transgénicos , Modelos Animales de Enfermedad , Humanos
3.
Environ Int ; 190: 108781, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38880060

RESUMEN

As an exogenous carbon input, microplastics (MPs), especially biodegradable MPs, may significantly disrupt soil microbial communities and soil element cycling (CNPS cycling), but few studies have focused on this. Here, we focused on assessing the effects of conventional low-density polyethylene (LDPE), biodegradable polybutylene adipate terephthalate (PBAT), and polylactic acid (PLA) MPs on rhizosphere microbial communities and CNPS cycling in a soil-soybean system. The results showed that PBAT-MPs and PLA-MPs were more detrimental to soybean growth than LDPE-MPs, resulting in a reduction in shoot nitrogen (14.05% and 11.84%) and shoot biomass (33.80% and 28.09%) at the podding stage. In addition, dissolved organic carbon (DOC) increased by 20.91% and 66.59%, while nitrate nitrogen (NO3--N) significantly decreased by 56.91% and 69.65% in soils treated with PBAT-MPs and PLA-MPs, respectively. PBAT-MPs and PLA-MPs mainly enhanced copiotrophic bacteria (Proteobacteria) and suppressed oligotrophic bacteria (Verrucomicrobiota, Gemmatimonadota, etc.), increasing the abundance of CNPS cycling-related functional genes. LDPE-MPs tended to enrich oligotrophic bacteria (Verrucomicrobiota, etc.) and decrease the abundance of CNPS cycling-related functional genes. Correlation analysis revealed that MPs with different degradation properties selectively affected the composition and function of the bacterial community, resulting in changes in the availability of soil nutrients (especially NO3--N). Redundancy analysis further indicated that NO3--N was the primary constraining factor for soybean growth. This study provides a new perspective for revealing the underlying ecological effects of MPs on soil-plant systems.

4.
Sci Total Environ ; 933: 172933, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38703855

RESUMEN

Biodegradable plastics were developed to mitigate environmental pollution caused by conventional plastics. Research indicates that biodegradable microplastics still have effects on plants and microorganisms as their non-biodegradable counterparts, yet the effects on vegetable crops are not well-documented. Additionally, the function of soil microorganisms affected by biodegradable microplastics on the fate of microplastics remains unverified. In this study, Brassica chinensis was cultivated in soil previously incubated for one year with low-density polyethylene (LDPE-MPs) and poly (butylene adipate-co-terephthalate) microplastics (PBAT-MPs) at 0.05 % and 2 % concentrations. High concentrations of PBAT-MPs significantly reduced the biomass to 5.83 % of the control. The abundance of Methyloversatilis, IS-44, and UTCFX1 in the rhizosphere bacterial community increased significantly in the presence of PBAT-MPs. Moreover, these microplastics significantly enhanced soil enzyme activity. Incubation tests were performed with three PBAT plastic sheets to assess the function of the altered bacterial community in the soil of control (Control-soil) and soil treated with high concentrations of PBAT-MPs (PBAT-MPs-soil). Scanning Electron Microscopy and Atomic Transfer Microscopy (SEM/ATM) results confirmed enhanced PBAT degradation in the PBAT-MPs-soil. PICRUST2 analysis revealed that pathways related to substance degradation were upregulated in the PBAT-MPs-soil. Furthermore, a higher percentage of strains with PBAT-MPs-degrading ability was found in PBAT-MPs-soil. Our results confirm that PBAT-MPs significantly inhibit the growth of vegetable crops and that soil bacterial communities affected by PBAT-MPs are instrumental in degrading them.


Asunto(s)
Biodegradación Ambiental , Microplásticos , Microbiología del Suelo , Contaminantes del Suelo , Contaminantes del Suelo/toxicidad , Microplásticos/toxicidad , Plásticos Biodegradables , Suelo/química , Brassica/microbiología , Brassica/efectos de los fármacos , Bacterias/efectos de los fármacos , Polietileno , Plásticos
5.
J Affect Disord ; 346: 1-6, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37923225

RESUMEN

BACKGROUND: Geriatric depression increases the public health burden and health care costs, reduces quality of life. Studies have shown the association between ω-3 PUFAs levels and inflammatory markers levels and depression, but few have explored the relationship between omega-3 PUFAs, inflammatory markers, and cognitive function in geriatric depression. This study aimed to compare the differences in ω-3 PUFAs levels and inflammatory markers between geriatric depression with cognitive impairment (CI) and those without CI. METHODS: A total of three hundred and five elderly patients were recruited. In addition to collecting basic information, their blood specimens were collected to detect serum EPA, DHA, AA, TC, LDL-C, IL-6, TNF-α, and hs-CRP levels. The Hamilton depression scale (HAMD), Hamilton anxiety scale (HAMA), and The Montreal cognitive assessment (MoCA) were used to assess their depression, anxiety, and cognitive function, respectively. RESULTS: Compared to those without CI, geriatric depression patients with CI had higher serum TC, LDL-C levels, lower EPA, DHA, and AA levels, and more elevated IL-6, TNF-α, and hs-CRP levels (all P < 0.05). Further linear regression analysis showed that EPA, DHA, and TNF-α, hs-CRP levels were significantly associated with the occurrence and the severity of CI. LIMITATIONS: No causal relationship could be drawn due to the cross-sectional design. CONCLUSIONS: Omega-3 PUFAs and inflammatory factors levels may predict CI in elderly patients with MDD in the future. Our findings suggest that ω-3 PUFAs (EPA and DHA) and inflammatory factors (TNF-α and CRP) may predict the occurrence and the severity of CI among elderly MDD patients.


Asunto(s)
Disfunción Cognitiva , Ácidos Grasos Omega-3 , Humanos , Anciano , Estudios Transversales , Proteína C-Reactiva , Factor de Necrosis Tumoral alfa , Interleucina-6 , LDL-Colesterol , Depresión , Calidad de Vida , Ácido Eicosapentaenoico , Ácidos Docosahexaenoicos
6.
Open Med (Wars) ; 18(1): 20230855, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38045856

RESUMEN

To investigate the effects of cimifugin on adipogenesis and tumor necrosis factor (TNF-α)-induced insulin resistance (IR) and inflammation in 3T3-L1 adipocytes. 3T3-L1 adipocytes were treated with 3-isobutyl-1-methyl-xanthine, dexamethasone, and insulin or cimifugin and then Oil Red O staining and intracellular triglyceride content detection were performed to assess adipogenesis. Subsequently, after cimifugin treatment, TNF-α was used to induce IR and inflammation. The results showed that cimifugin reduced intracellular lipids accumulation of 3T3-L1 adipocytes. Cimifugin improved IR of 3T3-L1 adipocytes induced by TNF-α, as reflected in decreased adiponectin, GLUT-4, and IRS-1 mRNA and protein expression. Moreover, cimifugin reduced TNF-α-induced pro-inflammatory factors production and phospho-P65 expression, and MAPK pathway activation in the 3T3-L1 adipocytes. These findings suggested that cimifugin might be useful for the prevention and therapy of obesity-related IR and inflammation.

7.
Front Immunol ; 14: 1266992, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37781406

RESUMEN

Background: Immunotherapy, particularly the utilization of immune checkpoint inhibitors (ICIs), assumes a pivotal role in the comprehensive management of advanced lung cancer. There has been substantial deliberation regarding the appropriateness of extending ICIs treatment beyond the point of disease progression. This study delves into the potential benefits of sustained utilization of ICIs subsequent to disease progression in patients. Methods: A retrospective analysis was conducted on a cohort of 248 patients diagnosed with advanced lung cancer who received treatment with ICIs. The study population comprised 99 patients in the treatment beyond progression (TBP) group and 42 patients in the non-treatment beyond progression (NTBP) group. Parameters including progression-free survival (PFS), overall survival (OS), objective response rate (ORR), and disease control rate (DCR) were assessed. The Cox proportional hazard regression model was employed to analyze prognostic factors related to immunotherapy. Results: Patients undergoing primary treatment with PD-1/PD-L1 inhibitors exhibited a median progression-free survival (mPFS) of 5.3 months. In the context of disease progression, a comparison between the TBP and NTBP groups was performed with respect to mPFS. The results demonstrated that the TBP group manifested an mPFS of 8.6 months, contrasting with the NTBP group's mPFS of 4.0 months (p=0.028). The mean overall survival (mOS) in the TBP group exhibited a statistically significant increase in comparison to the NTBP group (14.1 months vs. 6.0 months, p=0.028). Evaluation of the objective response rate (ORR) between the TBP and NTBP groups revealed a substantial distinction. The TBP group displayed an ORR of 12.1%, while the NTBP group exhibited a lower ORR of 2.4%. The statistical analysis yielded a p-value of 0.068, signifying a notable trend towards significance. The disease control rate (DCR) was also assessed and exhibited a noteworthy variance between the two groups, with a higher DCR of 92.9% in contrast to 71.4% in the control group (p = 0.001). Conclusion: Subsequent to ICIs treatment, a subset of patients may derive continued benefits from anticancer therapy, notwithstanding the progression of their advanced lung cancer.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Neoplasias Pulmonares , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Estudios Retrospectivos , Grupos Control , Neoplasias Pulmonares/tratamiento farmacológico , Progresión de la Enfermedad
8.
J Agric Food Chem ; 71(40): 14814-14824, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37782472

RESUMEN

Residues of endocrine disrupting steroid hormones in food might cause various diseases like cardiovascular diseases and breast and prostate cancers. Monitoring steroid hormone levels plays a vital role in ensuring food safety and exploring the pathogenic mechanism of steroid hormone-related diseases. Based on the Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click reaction, a novel chemoselective probe, Azo-N3, which contains a reactive site N3, an imidazolium salt-based MS tag, and an azobenzene-based photoswitchable handle, was designed and synthesized to label ethynyl-bearing steroid hormones. The probe Azo-N3 was applied for the highly selective and sensitive detection of four ethynyl-bearing steroid hormones in food samples (milk, egg, and pork) by using ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The ionization efficiency of the labeled analytes could be increased by 6-105-fold, and such a labeled method exhibited satisfactory detection limits (0.04-0.2 µg/L), recovery (80.6-122.4%), and precision (RSDs% lower than 6.9%). Interestingly, the efficient immobilization of the probe Azo-N3 onto α-cyclodextrin (α-CD)-modified magnetic particles to construct a solid supported chemoselective probe Fe3O4-CD-Azo-N3 and UV light-controlled release of the labeled analytes from a magnetic support can be achieved by taking advantage of the photoswitched host-guest inclusion between the azobenzene unit and α-CD. The potential applications of Fe3O4-CD-Azo-N3 for labeling, capturing, and the photocontrolled release of the labeled steroid hormones were fully investigated by mass spectrometry imaging analysis. This work not only provides a sensitive and accurate method to detect steroid hormones in food but also opens a new avenue in designing solid supported chemoselective probes.


Asunto(s)
Hormonas , Espectrometría de Masas en Tándem , Humanos , Masculino , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Esteroides/química , Cromatografía Líquida de Alta Presión/métodos
9.
Proc Natl Acad Sci U S A ; 120(43): e2221915120, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37844240

RESUMEN

This article sheds light on how to capture knowledge integration dynamics in college course content, improves and enriches the definition and measurement of interdisciplinarity, and expands the scope of research on the benefits of interdisciplinarity to postcollege outcomes. We distinguish between what higher education institutions claim regarding interdisciplinarity and what they appear to actually do. We focus on the core academic element of student experience-the courses they take, develop a text-based semantic measure of interdisciplinarity in college curriculum, and test its relationship to average earnings of graduates from different types of schools of higher education. We observe that greater exposure to interdisciplinarity-especially for science majors-is associated with increased earnings after college graduation.


Asunto(s)
Curriculum , Estudios Interdisciplinarios , Humanos , Universidades , Estudiantes , Instituciones Académicas
10.
J Theor Biol ; 573: 111593, 2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37544589

RESUMEN

Excessive accumulation of ß-catenin proteins is a vital driver in the development of breast cancer. Many clinical assessments incorporating immunotherapy with targeted mRNA of ß-catenin are costly endeavor. This paper develops novel mathematical models for different treatments by invoking available clinical data to calibrate models, along with the selection and evaluation of therapy strategies in a faster manner with lower cost. Firstly, in order to explore the interactions between cancer cells and the immune system within the tumor microenvironment, we construct different types of breast cancer treatment models based on RNA interference technique and immune checkpoint inhibitors, which have been proved to be an effective combined therapy in pre-clinical trials associated with the inhibition of ß-catenin proteins to enhance intrinsic anti-tumor immune response. Secondly, various techniques including MCMC are adopted to estimate multiple parameters and thus simulations in agreement with experimental results sustain the validity of our models. Furthermore, the gradient descent method and particle swarm algorithm are designed to optimize therapy schemes to inhibit the growth of tumor and lower the treatment cost. Considering the mechanisms of drug resistance in vivo, simulations exhibit that therapies are ineffective resulting in cancer relapse in the prolonged time. For this reason, parametric sensitivity analysis sheds light on the choice of new treatments which indicate that, in addition to inhibiting ß-catenin proteins and improving self-immunity, the injection of dendritic cells promoting immunity may provide a novel vision for the future of cancer treatment. Overall, our study provides witness of principle from a mathematical perspective to guide clinical trials and the selection of treatment regimens.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/terapia , Inmunoterapia/métodos , Cateninas , Microambiente Tumoral
11.
J Sep Sci ; 46(16): e2200935, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37349859

RESUMEN

In this work, homochiral reduced imine cage was covalently bonded to the surface of the silica to prepare a novel high-performance liquid chromatography stationary phase, which was applied for the multiple separation modes such as normal phase, reversed-phase, ion exchange, and hydrophilic interaction chromatography. The successful preparation of the homochiral reduced imine cage bonded silica stationary phase was confirmed by performing a series of methods including X-ray photoelectron spectroscopy, thermogravimetric analysis, and infrared spectroscopy. From the extracted results of the chiral resolution in normal phase and reversed-phase modes, it was demonstrated that seven chiral compounds were successfully separated, among which the resolution of 1-phenylethanol reached the value of 3.97. Moreover, the multifunctional chromatographic performance of the new molecular cage stationary phase was systematically investigated in the modes of reversed-phase, ion exchange, and hydrophilic interaction chromatography for the separation and analysis of a total of 59 compounds in eight classes. This work demonstrated that the homochiral reduced imine cage not only achieved multiseparation modes and multiseparation functions performance with high stability, but also expanded the application of the organic molecular cage in the field of liquid chromatography.

12.
Nat Commun ; 14(1): 2391, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37100817

RESUMEN

Global agricultural trade creates multiple telecoupled flows of nitrogen (N) and phosphorus (P). The flows of physical and virtual nutrients along with trade have discrepant effects on natural resources in different countries. However, existing literature has not quantified or analyzed such effects yet. Here we quantified the physical and virtual N and P flows embedded in the global agricultural trade networks from 1997 to 2016 and elaborated components of the telecoupling framework. The N and P flows both increased continuously and more than 25% of global consumption of nutrients in agricultural products were related to physical nutrient flows, while virtual nutrient flows were equivalent to one-third of the nutrients inputs into global agricultural system. These flows have positive telecoupling effects on saving N and P resources at the global scale. Reducing inefficient trade flows will enhance resource conservation, environmental sustainability in the hyper-globalized world.

14.
J Hazard Mater ; 442: 130045, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36162306

RESUMEN

As an ecological niche close to the polymer, microorganisms in the plastisphere possess the advantage of degrading plastics. This study aims to investigate the bacterial community succession and obtain degrading bacteria in the plastisphere, as well as identify the most efficient degradation combination by co-culture of multiple strains. The findings demonstrate the alpha-diversity indices of the plastisphere bacterial community are significantly lower, and the community structure is regularly and significantly altered. With the time of culture, the plastisphere community composition alters regularly, and the hydrocarbon-degrading genera become the core members. Functional prediction of community reveals the potential for Xenobiotics Biodegradation and Metabolism of plastisphere, and the apparent variations detections of polyethylene mulching film (PMF) indicating the PMF degrading ability of plastisphere. Besides, three PMF-degrading bacterial strains, Rhodopseudomonas sp. P1 (P), Rhodanobacter sp. Rs (R) and Microbacterium sp. M1 (M), are screened for co-culture with PMF degrading strain Bacillus aryabhattai 5-3 (B). By considering bacterial growth, biofilm adhesion, and apparent degradation of different samples, RB (R. sp. Rs + B. aryabhattai 5-3) is ultimately selected as the best PMF degradation combination. This study provides a new possibility for plastisphere-related research from the perspective of mitigating plastic pollution on agricultural land.


Asunto(s)
Plásticos , Polietileno , Polietileno/metabolismo , Técnicas de Cocultivo , Xenobióticos , Bacterias/metabolismo , Biodegradación Ambiental
15.
Molecules ; 27(24)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36558026

RESUMEN

Reduced imine cage (RCC3) was covalently bonded to the surface of silica spheres, and then the secondary amine group of the molecular cage was embedded in non-polar C10 for modification to prepare a novel RCC3-C10@silica HPLC stationary phase with multiple separation functions. Through infrared spectroscopy, thermogravimetric analysis and nitrogen adsorption-desorption characterization, it was confirmed that RCC3-C10 was successfully bonded to the surface of silica spheres. The resolution of RCC3-C10@silica in reversed-phase separation mode is as high as 2.95, 3.73, 3.27 and 4.09 for p-phenethyl alcohol, 1-phenyl-2-propanol, p-methylphenethyl alcohol and 1-phenyl-1-propanol, indicating that the stationary phase has excellent chiral resolution performance. In reversed-phase and hydrophilic separation modes, RCC3-C10@silica realized the separation and analysis of a total of 70 compounds in 8 classes of Tanaka mixtures, alkylbenzene rings, polyphenyl rings, phenols, anilines, sulfonamides, nucleosides and flavonoids, and the analysis of a variety of chiral and achiral complex mixtures have been completed at the same time. Compared with the traditional C18 commercial column, RCC3-C10@silica exhibits better chromatographic separation selectivity, aromatic selectivity and polar selectivity. The multifunctional separation mechanism exhibited by the stationary phase originates from various synergistic effects such as hydrophobic interaction, π-π interaction, hydrogen bonding and steric interaction provided by RCC3 and C10 groups. This work provides flexible selectivity and application prospects for novel multi-separation functional chromatographic columns.


Asunto(s)
Aminas , Dióxido de Silicio , Cromatografía Líquida de Alta Presión/métodos , Dióxido de Silicio/química , Porosidad , Fenoles/análisis , Interacciones Hidrofóbicas e Hidrofílicas
16.
Ecotoxicol Environ Saf ; 246: 114160, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36215881

RESUMEN

Studies have shown that mulching agricultural fields with plastic residues can influence microbial communities in the environment, but few studies have investigated the differences in the soil microbial communities in distinct areas under mulching with different colored plastic products. Thus, in this study, we explored how different colored polyethylene mulching films (PMFs) might affect soil bacterial communities during enrichment incubation. We found significant differences in the bacterial communities under different colored PMFs after incubation. Treatment with the same colored PMF obtained more similar bacterial community compositions. For instance, at the class level, Gammaproteobacteria and Bacteroidia were most abundant with black PMF, whereas Actinobacteria and Bacteroidia were most abundant with white PMF. The most abundant genera were Acinetobacter and Chryseobacterium with black PMF but Rhodanobacter and Paenarthrobacter with white PMF. Polyethylene- and hydrocarbon-degrading bacteria were the core members detected under both treatments, and the bacterial communities were predicted to have the potential for the biodegradation and metabolism of xenobiotics after enrichment culture according to the Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) tool. In addition, the bacterial communities in soil from Xinjiang treated with white PMF and in soil from Yangling treated with black PMF were strongly correlated and stable. Our results suggest that the color of the PMF applied affected the soil bacterial communities, where plastics with the same color may have recruited similar species of microorganisms, although the origins of these microorganisms were not the same.


Asunto(s)
Polietileno , Suelo , Suelo/química , Agricultura/métodos , Filogenia , Bacterias/genética , Plásticos , Microbiología del Suelo , China
18.
JMIR Med Inform ; 10(4): e33799, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35442195

RESUMEN

BACKGROUND: With the accumulation of electronic health records and the development of artificial intelligence, patients with cancer urgently need new evidence of more personalized clinical and demographic characteristics and more sophisticated treatment and prevention strategies. However, no research has systematically analyzed the application and significance of artificial intelligence based on electronic health records in cancer care. OBJECTIVE: The aim of this study was to conduct a review to introduce the current state and limitations of artificial intelligence based on electronic health records of patients with cancer and to summarize the performance of artificial intelligence in mining electronic health records and its impact on cancer care. METHODS: Three databases were systematically searched to retrieve potentially relevant papers published from January 2009 to October 2020. Four principal reviewers assessed the quality of the papers and reviewed them for eligibility based on the inclusion criteria in the extracted data. The summary measures used in this analysis were the number and frequency of occurrence of the themes. RESULTS: Of the 1034 papers considered, 148 papers met the inclusion criteria. Cancer care, especially cancers of female organs and digestive organs, could benefit from artificial intelligence based on electronic health records through cancer emergencies and prognostic estimates, cancer diagnosis and prediction, tumor stage detection, cancer case detection, and treatment pattern recognition. The models can always achieve an area under the curve of 0.7. Ensemble methods and deep learning are on the rise. In addition, electronic medical records in the existing studies are mainly in English and from private institutional databases. CONCLUSIONS: Artificial intelligence based on electronic health records performed well and could be useful for cancer care. Improving the performance of artificial intelligence can help patients receive more scientific-based and accurate treatments. There is a need for the development of new methods and electronic health record data sharing and for increased passion and support from cancer specialists.

19.
Eur J Med Chem ; 228: 114029, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34871840

RESUMEN

Achieving selective release of chemical anticancer agents and improving therapeutic efficacy has always been a hot spot in the field of cancer research, yet how to achieve this remains a great challenge. In this work, we constructed a novel chemical anticancer agent (named MCLOP) by introducing naphthalimide into the skeleton of methylene blue (MB). Under the stimulation by cellular hypochlorous acid (HClO) and visible light, selective release of active naphthalimide can be achieved within breast cancer cell lines, the release process of which can be tracked visually using near-infrared fluorescence of MB (685 nm). More importantly, we developed biotinylated curcumin (Cur-Bio) as a new chemosensitizer, which significantly enhanced the ability of MCLOP to induce autophagic cell death of breast cancer cells. This synergistic treatment strategy exhibited an excellent anti-proliferation effect on breast cancer cells in vitro, three-dimensional (3D) cell sphere model, and mouse tumor model in vivo. This work provides a new strategy for the treatment of breast cancer and also opens new opportunities for the efficient treatment of cancer with curcumin-based chemosensitizer.


Asunto(s)
Antineoplásicos/farmacología , Muerte Celular Autofágica/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Curcumina/farmacología , Naftalimidas/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Biotinilación , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Supervivencia Celular/efectos de los fármacos , Curcumina/síntesis química , Curcumina/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Estructura Molecular , Relación Estructura-Actividad , Células Tumorales Cultivadas
20.
J Sep Sci ; 45(4): 845-855, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34931462

RESUMEN

Selenium-bridged bis(ß-cyclodextrin)s organic-inorganic hybrid silica material with regular spherical shape as new type of chiral stationary phase was directly synthesized under the one-pot hydrothermal synthesis method, and the chiral stationary phase was further characterized by infrared spectroscopy, scanning electron microscopy, thermogravimetry, and elemental analysis. The results of chiral separation showed that eight chiral compounds including various types of chiral alcohols and flavanone were successfully separated in the reversed-phase separation mode by high performance liquid chromatography, which showed the better chiral resolution effect than that on the C2 position of single ß-cyclodextrin. The mechanism of chiral separation was likely due to multiple interactions such as inclusion, hydrogen bonding, electrostatic interaction, dipole-dipole interaction, and the synergistic effect of two cyclodextrins during the chiral resolution process. The synergy of the two cyclodextrins has great potential for development in chiral resolution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA