Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Geochem Health ; 46(10): 403, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39196318

RESUMEN

Understanding the pollution situation of potentially toxic metals (PTMs) in fine road dust (FRD) in emerging industrialized cities and identifying priority control factors is crucial for urban environmental management, resident health protection, and pollution control. This study conducted a comprehensive investigation on PTMs pollution in FRD in Zunyi, a representative emerging industrialized city in the karst region of southwestern China. The average contents of Ni, Cr, Mn, Cu, Zn, Ba, Pb, V, and Co in the FRD were 43.2, 127.0, 1232.1, 134.4, 506.6, 597.8, 76.1, 86.8, and 16.2 mg kg-1, respectively, which were obviously higher than the corresponding background levels of the local soil except for V and Co. The comprehensive pollution level of the determined PTMs in the FRD was very high, primarily caused by Zn and Cu. The sources of PTMs in Zunyi FRD were traffic, industrial, construction, and natural sources, accounting for 38.0, 23.7, 21.9, and 16.4% of the total PTMs content, respectively. The PTMs in Zunyi FRD exhibited a low to moderate overall ecological risk level, mainly contributed by Cu and traffic source. The cancer risks of PTMs in Zunyi FRD were high for all populations. The non-carcinogenic risk of PTMs in Zunyi FRD was acceptable for adults, but cannot be ignored for children. According to the source-specific probabilistic health risk estimation results, the priority control source is industrial source and the priority control PTM is Cr. Local governments need to give more attention to the carcinogenic risks and health hazards posed by PTMs in the FRD.


Asunto(s)
Polvo , Polvo/análisis , China , Humanos , Medición de Riesgo , Monitoreo del Ambiente , Metales Pesados/análisis , Niño , Contaminantes del Suelo/análisis , Adulto , Ciudades , Exposición a Riesgos Ambientales , Metales/análisis
2.
Adv Sci (Weinh) ; 11(25): e2400967, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38626379

RESUMEN

Recently, the altermagnetic materials with spin splitting effect (SSE), have drawn significant attention due to their potential to the flexible control of the spin polarization by the Néel vector. Here, the direct and inverse altermagnetic SSE (ASSE) in the (101)-oriented RuO2 film with the tilted Néel vector are reported. First, the spin torque along the x-, y-, and z-axis is detected from the spin torque-induced ferromagnetic resonance (ST-FMR), and the z-spin torque emerges when the electric current is along the [010] direction, showing the anisotropic spin splitting of RuO2. Further, the current-induced modulation of damping is used to quantify the damping-like torque efficiency (ξDL) in RuO2/Py, and an anisotropic ξDL is obtained and maximized for the current along the [010] direction, which increases with the reduction of the temperature, indicating the present of ASSE. Next, by way of spin pumping measurement, the inverse altermagnetic spin splitting effect (IASSE) is studied, which also shows a crystal direction-dependent anisotropic behavior and temperature-dependent behavior. This work gives a comprehensive study of the direct and inverse ASSE effects in the altermagnetic RuO2, inspiring future altermagnetic materials and devices with flexible control of spin polarization.

4.
Nano Lett ; 24(18): 5420-5428, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38666707

RESUMEN

Artificial intelligence has surged forward with the advent of generative models, which rely heavily on stochastic computing architectures enhanced by true random number generators with adjustable sampling probabilities. In this study, we develop spin-orbit torque magnetic tunnel junctions (SOT-MTJs), investigating their sigmoid-style switching probability as a function of the driving voltage. This feature proves to be ideally suited for stochastic computing algorithms such as the restricted Boltzmann machines (RBM) prevalent in pretraining processes. We exploit SOT-MTJs as both stochastic samplers and network nodes for RBMs, enabling the implementation of RBM-based neural networks to achieve recognition tasks for both handwritten and spoken digits. Moreover, we further harness the weights derived from the preceding image and speech training processes to facilitate cross-modal learning from speech to image generation. Our results clearly demonstrate that these SOT-MTJs are promising candidates for the development of hardware accelerators tailored for Boltzmann neural networks and other stochastic computing architectures.

5.
Adv Sci (Weinh) ; 11(23): e2402182, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38622896

RESUMEN

The incorporation of randomness into stochastic computing can provide ample opportunities for applications such as simulated annealing, non-polynomial hard problem solving, and Bayesian neuron networks. In these cases, a considerable number of random numbers with an accurate and configurable probability distribution function (PDF) are indispensable. Preferably, these random numbers are provided at the hardware level to improve speed, efficiency, and parallelism. In this paper, how spin-orbit torque magnetic tunnel junctions (SOT-MTJs) with high barriers are suitable candidates for the desired true random number generators is demonstrated. Not only do these SOT-MTJs perform excellently in speed and endurance, but their randomness can also be conveniently and precisely controlled by a writing voltage, which makes them a well-performed Bernoulli bit. By utilizing these SOT-MTJ-based Bernoulli bits, any PDF, including Gaussian, uniform, exponential, Chi-square, and even arbitrarily defined distributions can be realized. These PDF-configurable true random number generators can then promise to advance the development of stochastic computing and broaden the applications of the SOT-MTJs.

6.
Environ Geochem Health ; 46(3): 104, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438597

RESUMEN

Park dust is a carrier of heavy metal pollutants and could potentially harm the health of urban residents. The concentrations of 10 heavy metal(loid)s (HMs) in park dust from the Mianyang urban area were analysed via X-ray fluorescence spectrometry. Based on ArcGIS spatial analysis, Spearman correlation analysis, spatial autocorrelation analysis, and the positive matrix factorization (PMF) model, the spatial distribution and sources of HMs in park dust were studied. The average contents of Zn, Co, Cu, Cr, Pb, and Ba in park dust were 185.0, 33.7, 38.7, 178.7, 51.0, and 662.1 mg/kg, respectively, which are higher than the reference values. The 10 HMs exhibited obvious spatial distribution and local spatial agglomeration patterns. High concentrations of As and Pb were primarily concentrated in the eastern part of the Mianyang urban area. High concentrations of Zn, Cr, and Cu were largely distributed in parks near the Changjiang River and Fujiang River. A high concentration of Co was concentrated in the northern region. The high-value areas of Mn, Ba, V, and Ni occurred far from the city centre and were located in the southwestern region. We found that Pb and As primarily originated from mixed traffic and natural sources; Zn, Cr, and Cu mainly originated from industrial activities; Co largely originated from building sources; and Ba, Ni, Mn, and V were mostly derived from natural sources. Mixed, industrial, building, and natural sources accounted for 24.5%, 24.8%, 24.7%, and 26.0%, respectively, of the HM sources. Co, Cu, Cr, and Zn in the Mianyang urban area were obviously influenced by human activities and should receive close attention.


Asunto(s)
Contaminantes Ambientales , Metales Pesados , Humanos , Plomo , China , Polvo
7.
Nature ; 627(8005): 783-788, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38538937

RESUMEN

Controlling the intensity of emitted light and charge current is the basis of transferring and processing information1. By contrast, robust information storage and magnetic random-access memories are implemented using the spin of the carrier and the associated magnetization in ferromagnets2. The missing link between the respective disciplines of photonics, electronics and spintronics is to modulate the circular polarization of the emitted light, rather than its intensity, by electrically controlled magnetization. Here we demonstrate that this missing link is established at room temperature and zero applied magnetic field in light-emitting diodes2-7, through the transfer of angular momentum between photons, electrons and ferromagnets. With spin-orbit torque8-11, a charge current generates also a spin current to electrically switch the magnetization. This switching determines the spin orientation of injected carriers into semiconductors, in which the transfer of angular momentum from the electron spin to photon controls the circular polarization of the emitted light2. The spin-photon conversion with the nonvolatile control of magnetization opens paths to seamlessly integrate information transfer, processing and storage. Our results provide substantial advances towards electrically controlled ultrafast modulation of circular polarization and spin injection with magnetization dynamics for the next-generation information and communication technology12, including space-light data transfer. The same operating principle in scaled-down structures or using two-dimensional materials will enable transformative opportunities for quantum information processing with spin-controlled single-photon sources, as well as for implementing spin-dependent time-resolved spectroscopies.

8.
Nat Commun ; 15(1): 2077, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38453947

RESUMEN

Ultrastrong and deep-strong coupling are two coupling regimes rich in intriguing physical phenomena. Recently, hybrid magnonic systems have emerged as promising candidates for exploring these regimes, owing to their unique advantages in quantum engineering. However, because of the relatively weak coupling between magnons and other quasiparticles, ultrastrong coupling is predominantly realized at cryogenic temperatures, while deep-strong coupling remains to be explored. In our work, we achieve both theoretical and experimental realization of room-temperature ultrastrong magnon-magnon coupling in synthetic antiferromagnets with intrinsic asymmetry of magnetic anisotropy. Unlike most ultrastrong coupling systems, where the counter-rotating coupling strength g2 is strictly equal to the co-rotating coupling strength g1, our systems allow for highly tunable g1 and g2. This high degree of freedom also enables the realization of normalized g1 or g2 larger than 0.5. Particularly, our experimental findings reveal that the maximum observed g1 is nearly identical to the bare frequency, with g1/ω0 = 0.963, indicating a close realization of deep-strong coupling within our hybrid magnonic systems. Our results highlight synthetic antiferromagnets as platforms for exploring unconventional ultrastrong and even deep-strong coupling regimes, facilitating the further exploration of quantum phenomena.

9.
Nano Lett ; 24(7): 2196-2202, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38329428

RESUMEN

Antiferromagnetic (AFM) skyrmions are magnetic vortices composed of antiparallell-aligned neighboring spins. In stark contrast to conventional skyrmions based on ferromagnetic order, AFM skyrmions have vanished stray fields, higher response frequencies, and rectified translational motion driven by an external force. Therefore, AFM skyrmions promise highly efficient spintronics devices with high bit mobility and density. Nevertheless, the experimental realization of intrinsic AFM skyrmions remains elusive. Here, we show that AFM skyrmions can be nucleated via interfacial exchange coupling at the surface of a room-temperature AFM material, IrMn, exploiting the particular response from uncompensated moments to the thermal annealing and imprinting effects. Further systematic magnetic characterizations validate the existence of such an AFM order at the IrMn/CoFeB interfaces. Such AFM skyrmions have a typical size of 100 nm, which presents pronounced robustness against field and temperature. Our work opens new pathways for magnetic topological devices based on AFM skyrmions.

10.
Small ; 20(25): e2308724, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38229571

RESUMEN

In future information storage and processing, magnonics is one of the most promising candidates to replace traditional microelectronics. Yttrium iron garnet (YIG) films with perpendicular magnetic anisotropy (PMA) have aroused widespread interest in magnonics. Obtaining strong PMA in a thick YIG film with a small lattice mismatch (η) has been fascinating but challenging. Here, a novel strategy is proposed to reduce the required minimum strain value for producing PMA and increase the maximum thickness for maintaining PMA in YIG films by slight oxygen deficiency. Strong PMA is achieved in the YIG film with an η of only 0.4% and a film thickness up to 60 nm, representing the strongest PMA for such a small η reported so far. Combining transmission electron microscopy analyses, magnetic measurements, and a theoretical model, it is demonstrated that the enhancement of PMA physically originates from the reduction of saturation magnetization and the increase of magnetostriction coefficient induced by oxygen deficiency. The Gilbert damping values of the 60-nm-thick YIG films with PMA are on the order of 10-4. This strategy improves the flexibility for the practical applications of YIG-based magnonic devices and provides promising insights for the theoretical understanding and the experimental enhancement of PMA in garnet films.

11.
Sci Adv ; 10(2): eadk7935, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38215195

RESUMEN

The intrinsic fast dynamics make antiferromagnetic spintronics a promising avenue for faster data processing. Ultrafast antiferromagnetic resonance-generated spin current provides valuable access to antiferromagnetic spin dynamics. However, the inverse effect, spin-torque-driven antiferromagnetic resonance (ST-AFMR), which is attractive for practical utilization of fast devices but seriously impeded by difficulties in controlling and detecting Néel vectors, remains elusive. We observe ST-AFMR in Y3Fe5O12/α-Fe2O3/Pt at room temperature. The Néel vector oscillates and contributes to voltage signal owing to antiferromagnetic negative spin Hall magnetoresistance-induced spin rectification effect, which has the opposite sign to ferromagnets. The Néel vector in antiferromagnetic α-Fe2O3 is strongly coupled to the magnetization in Y3Fe5O12 buffer, resulting in the convenient control of Néel vectors. ST-AFMR experiment is bolstered by micromagnetic simulations, where both the Néel vector and the canted moment of α-Fe2O3 are in elliptic resonance. These findings shed light on the spin current-induced dynamics in antiferromagnets and represent a step toward electrically controlled antiferromagnetic terahertz emitters.

12.
Nano Lett ; 23(24): 11485-11492, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38063397

RESUMEN

The spin Hall effect (SHE) can generate a pure spin current by an electric current, which is promisingly used to electrically control magnetization. To reduce the power consumption of this control, a giant spin Hall angle (SHA) in the SHE is desired in low-resistivity systems for practical applications. Here, critical spin fluctuation near the antiferromagnetic (AFM) phase transition in chromium (Cr) is proven to be an effective mechanism for creating an additional part of the SHE, named the fluctuation spin Hall effect. The SHA is significantly enhanced when the temperature approaches the Néel temperature (TN) of Cr and has a peak value of -0.36 near TN. This value is higher than the room-temperature value by 153% and leads to a low normalized power consumption among known spin-orbit torque materials. This study demonstrates the critical spin fluctuation as a prospective way to increase the SHA and enriches the AFM material candidates for spin-orbitronic devices.

13.
Sci Adv ; 9(44): eadg9819, 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37910619

RESUMEN

Spin-orbit torque (SOT) is a promising strategy to deterministically switch the perpendicular magnetization, but usually requires an in-plane magnetic field for breaking the mirror symmetry, which is not suitable for most advanced industrial applications. Van der Waals (vdW) materials with low crystalline symmetry and topological band structures, e.g., Weyl semimetals (WSMs), potentially serve as an outstanding system that may simultaneously realize field-free switching and high energy efficiency. Yet, the demonstration of these superiorities at room temperature has not been realized. Here, we achieve a field-free switching of perpendicular magnetization by using a layered type II WSM, TaIrTe4, in a TaIrTe4/Ti/CoFeB system at room temperature with the critical switching current density ~2.4 × 106 A cm-2. The field-free switching is ascribed to the out-of-plane SOT allowed by the low crystal symmetry. Our work suggests that using low-symmetry materials to generate SOT is a promising route for the manipulation of perpendicular magnetization at room temperature.

14.
Nano Lett ; 23(20): 9482-9490, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37818857

RESUMEN

Racetrack memories with magnetic skyrmions have recently been proposed as a promising storage technology. To be appealing, several challenges must still be faced for the deterministic generation of skyrmions, their high-fidelity transfer, and accurate reading. Here, we realize the first proof-of-concept of a 9-bit skyrmion racetrack memory with all-electrical controllable functionalities implemented in the same device. The key ingredient is the generation of a tailored nonuniform distribution of magnetic anisotropy via laser irradiation in order to (i) create a well-defined skyrmion nucleation center, (ii) define the memory cells hosting the information coded as the presence/absence of skyrmions, and (iii) improve the signal-to-noise ratio of anomalous Hall resistance measurements. This work introduces a strategy to unify previous findings and predictions for the development of a generation of racetrack memories with robust control of skyrmion nucleation and position, as well as effective skyrmion electrical detection.

15.
Nat Commun ; 14(1): 3824, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37380642

RESUMEN

The discovery of magnetic order in atomically-thin van der Waals materials has strengthened the alliance between spintronics and two-dimensional materials. An important use of magnetic two-dimensional materials in spintronic devices, which has not yet been demonstrated, would be for coherent spin injection via the spin-pumping effect. Here, we report spin pumping from Cr2Ge2Te6 into Pt or W and detection of the spin current by inverse spin Hall effect. The magnetization dynamics of the hybrid Cr2Ge2Te6/Pt system are measured, and a magnetic damping constant of ~ 4-10 × 10-4 is obtained for thick Cr2Ge2Te6 flakes, a record low for ferromagnetic van der Waals materials. Moreover, a high interface spin transmission efficiency (a spin mixing conductance of 2.4 × 1019/m2) is directly extracted, which is instrumental in delivering spin-related quantities such as spin angular momentum and spin-orbit torque across an interface of the van der Waals system. The low magnetic damping that promotes efficient spin current generation together with high interfacial spin transmission efficiency suggests promising applications for integrating Cr2Ge2Te6 into low-temperature two-dimensional spintronic devices as the source of coherent spin or magnon current.

16.
Adv Mater ; 35(31): e2302350, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37141542

RESUMEN

Giant spin-orbit torque (SOT) from topological insulators (TIs) has great potential for low-power SOT-driven magnetic random-access memory (SOT-MRAM). In this work, a functional 3-terminal SOT-MRAM device is demonstrated by integrating the TI [(BiSb)2 Te3 ] with perpendicular magnetic tunnel junctions (pMTJs), where the tunneling magnetoresistance is employed for the effective reading method. An ultralow switching current density of 1.5 × 105  A cm-2 is achieved in the TI-pMTJ device at room temperature, which is 1-2 orders of magnitude lower than that in conventional heavy-metals-based systems, due to the high SOT efficiency θSH = 1.16 of (BiSb)2 Te3 . Furthermore, all-electrical field-free writing is realized by the synergistic effect of a small spin-transfer torque current during the SOT. The thermal stability factor (Δ = 66) shows the high retention time (>10 years) of the TI-pMTJ device. This work sheds light to the future low-power, high-density, and high-endurance/retention magnetic memory technology based on quantum materials.

17.
J Phys Condens Matter ; 35(26)2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-36958042

RESUMEN

Synthetic antiferromagnet (SAF) is an outstanding system for controlling magnetic coupling via tuning the layer thickness and material composition. Here, we control the interlayer exchange coupling (IEC) in a perpendicularly magnetized SAF Pt/Co/Ir/CoFeB/MgO multilayer, which is tuned by varying the nonmagnetic layer Ir thickness and the magnetic layer Co thickness. And we study the spin-orbit torque (SOT) driven magnetization switching of the SAF. In the SAF with a weak IEC, the SOT-driven switching behavior is similar to that of a single ferromagnet system, which is dominated by the external magnetic field. In contrast, in the SAF with an ultra-strong IEC, the saturation magnetic field is large than 50 kOe, and the SOT-driven switching behavior is decided by the effective magnetic field. The effective field is correlated to the external magnetic field, the IEC field, magnetic moments of CoFeB and Co, and magnetic anisotropy. These results may advance the understanding of SOT switching of perpendicular SAFs and promote the applications of SAFs with low stray fields and lower power in spintronic devices.

18.
Phys Rev Lett ; 130(4): 046701, 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36763421

RESUMEN

A leading nonlinear effect in magnonics is the interaction that splits a high-frequency magnon into two low-frequency magnons with conserved linear momentum. Here, we report experimental observation of nonlocal three-magnon scattering between spatially separated magnetic systems, viz. a CoFeB nanowire and a yttrium iron garnet (YIG) thin film. Above a certain threshold power of an applied microwave field, a CoFeB Kittel magnon splits into a pair of counterpropagating YIG magnons that induce voltage signals in Pt electrodes on each side, in excellent agreement with model calculations based on the interlayer dipolar interaction. The excited YIG magnon pairs reside mainly in the first excited (n=1) perpendicular standing spin-wave mode. With increasing power, the n=1 magnons successively scatter into nodeless (n=0) magnons through a four-magnon process. Our results demonstrate nonlocal detection of two separately propagating magnons emerging from one common source that may enable quantum entanglement between distant magnons for quantum information applications.

19.
Adv Mater ; 34(42): e2204373, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35951262

RESUMEN

Recently, ferromagnetic-heterostructure spintronic terahertz (THz) emitters have been recognized as one of the most promising candidates for next-generation THz sources, owing to their peculiarities of high efficiency, high stability, low cost, ultrabroad bandwidth, controllable polarization, and high scalability. Despite the substantial efforts, they rely on external magnetic fields to initiate the spin-to-charge conversion, which hitherto greatly limits their proliferation as practical devices. Here, a unique antiferromagnetic-ferromagnetic (IrMn3 |Co20 Fe60 B20 ) heterostructure is innovated, and it is demonstrated that it can efficiently generate THz radiation without any external magnetic field. It is assigned to the exchange bias or interfacial exchange coupling effect and enhanced anisotropy. By precisely balancing the exchange bias effect and enhanced THz radiation efficiency, an optimized 5.6 nm-thick IrMn3 |Co20 Fe60 B20 |W trilayer heterostructure is successfully realized, yielding an intensity surpassing that of Pt|Co20 Fe60 B20 |W. Moreover, the intensity of THz emission is further boosted by togethering the trilayer sample and bilayer sample. Besides, the THz polarization may be flexibly controlled by rotating the sample azimuthal angle, manifesting sophisticated active THz field manipulation capability. The field-free coherent THz emission that is demonstrated here shines light on the development of spintronic THz optoelectronic devices.

20.
Nano Lett ; 22(17): 6857-6865, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-35849087

RESUMEN

Perpendicularly magnetized structures that are switchable using a spin current under field-free conditions can potentially be applied in spin-orbit torque magnetic random-access memory (SOT-MRAM). Several structures have been developed; however, new structures with a simple stack structure and MRAM compatibility are urgently needed. Herein, a typical structure in a perpendicular spin-transfer torque MRAM, the Pt/Co multilayer and its synthetic antiferromagnetic counterpart with perpendicular magnetic anisotropy, was observed to possess an intrinsic interlayer chiral interaction between neighboring magnetic layers, namely, the interlayer Dzyaloshinskii-Moriya interaction (DMI) effect. Furthermore, using a current parallel to the eigenvector of the interlayer DMI, we switched the perpendicular magnetization of both structures without a magnetic field, owing to the additional symmetry breaking introduced by the interlayer DMI. This SOT switching scheme realized in the Pt/Co multilayer and its synthetic antiferromagnet structure may open a new avenue toward practical perpendicular SOT-MRAM and other SOT devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA