Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Food Chem Toxicol ; 178: 113907, 2023 Aug.
Article En | MEDLINE | ID: mdl-37343715

This study was to evaluate the efficacy of TOXO-XL (XL), an integrated mycotoxin-mitigating agent, on aflatoxin B1 (AFB1)-induced damage in Leghorn male hepatoma (LMH), porcine jejunum epithelial cell line (IPEC-J2) and porcine alveolar macrophages (3D4/21) cells, and to explore its potential mechanisms. The results showed that 30% inhibition concentration (IC30) of AFB1 in LMH, IPEC-J2 and 3D4/21 cells was 0.5, 15.0, and 2.5 mg/L, respectively. Notably, cell viability, ROS, apoptosis and DNA lesion induced by AFB1 (IC30) could be ameliorated by the supplementation with XL at the dosage of 0.025, 0.025 and 0.005%, respectively. Additionally, the migration and phagocytosis abilities impaired by AFB1 were also restored by XL in 3D4/21. Further experiments revealed that XL supplementation markedly attenuated AFB1-induced inflammatory response by decreasing IL-1ß, IL-6 and IL-10 in LMH, IL-6 in IPEC-J2 and IL-1ß in 3D4/21 cells. Meanwhile, XL supplementation reversed the alterations of BAX, BCL-2 and caspase-3 induced by AFB1 in the three cells, suggesting that AFB1-induced apoptosis may be suppressed via the mitochondria-dependent pathway. Furthermore, XL may have a protective effect on the intestinal barrier through the restoration of occludin protein. Conclusively, these findings indicated that XL could alleviate AFB1-induced cytotoxicity in the three cells, potentially through the regulation of cytokines, ROS, apoptotic and DNA damage signaling.


Carcinoma, Hepatocellular , Liver Neoplasms , Male , Swine , Animals , Reactive Oxygen Species/metabolism , Aflatoxin B1/toxicity , Aflatoxin B1/metabolism , Carcinoma, Hepatocellular/metabolism , Chickens/metabolism , Interleukin-6/metabolism , Epithelial Cells , Apoptosis , Liver Neoplasms/metabolism
2.
Antioxidants (Basel) ; 10(11)2021 Oct 22.
Article En | MEDLINE | ID: mdl-34829536

The objective of this study is to evaluate the effects of organic acids on piglet growth performance and health status. A total of 360 weanling pigs (5.3 ± 0.6 kg) were randomly allotted to 3 treatment groups with 12 replicates of 10 pigs/pen. Piglets were fed the same basal diet and given either water (control) or water plus 2.0 L/Ton organic acid (OA) blends, such as OA1 or OA2, respectively, for 7 weeks. Compared to the control, OA1 and OA2 improved growth performance and/or reduced the piglets' diarrhea rate during the various periods and improved small intestinal morphology at days 14 and/or 49. OA1 and OA2 also increased serum CAT and SOD activities and/or T-AOC and, as expected, decreased MDA concentration. Moreover, at day 14 and/or day 49, OA1 and OA2 increased the jejunal mRNA levels of host defense peptides (PBD1, PBD2, NPG1, and NPG3) and tight junction genes (claudin-1) and decreased that of cytokines (IL-1ß and IL-2). Additionally, the two acidifiers regulated the abundance of several cecum bacterial genera, including Blautia, Bulleidia, Coprococcus, Dorea, Eubacterium, Subdoligranulum, and YRC2. In conclusion, both of the organic acid blends improved piglet growth performance and health status, potentially by regulating intestinal redox homeostasis, immunity, and microflora.

3.
Toxins (Basel) ; 13(2)2021 02 17.
Article En | MEDLINE | ID: mdl-33671260

The objective of this study was to evaluate the efficacy of mycotoxin binders in reducing the adverse effects of co-occurring dietary aflatoxin B1 (AFB1), deoxynivalenol (DON) and ochratoxin A (OTA) on laying hens. Three hundred and sixty 26-week-old Roman laying hens were randomly allocated into four experimental groups with 10 replicates of nine birds each. The four groups received either a basal diet (BD; Control), a BD supplemented with 0.15 mg/kg AFB1 + 1.5 mg/kg DON + 0.12 mg/kg OTA (Toxins), a BD + Toxins with Toxo-HP binder (Toxins + HP), or a BD + Toxins with TOXO XL binder (Toxins + XL) for 12 weeks. Compared to the control, dietary supplementation of mycotoxins decreased (P < 0.10) total feed intake, total egg weight, and egg-laying rate, but increased feed/egg ratio by 2.5-6.1% and mortality during various experimental periods. These alterations induced by mycotoxins were alleviated by supplementation with both TOXO HP and XL binders (P < 0.10). Furthermore, dietary mycotoxins reduced (P < 0.05) eggshell strength by 12.3% and caused an accumulation of 249 µg/kg of DON in eggs at week 12, while dietary supplementation with TOXO HP or XL mitigated DON-induced changes on eggshell strength and prevented accumulation of DON in eggs (P < 0.05). Moreover, dietary mycotoxins increased relative liver weight, but decreased spleen and proventriculus relative weights by 11.6-22.4% (P < 0.05). Mycotoxin exposure also increased alanine aminotransferase activity and reduced immunoglobulin (Ig) A, IgM, and IgG concentrations in serum by 9.2-26.1% (P < 0.05). Additionally, mycotoxin exposure induced histopathological damage and reduced villus height, villus height/crypt depth, and crypt depth in duodenum, jejunum and (or) ileum (P < 0.05). Notably, most of these histological changes were mitigated by supplementation with both TOXO HP and XL (P < 0.05). In conclusion, the present study demonstrated that the mycotoxin binders TOXO HP and XL can help to mitigate the combined effects of AFB1, DON, and OTA on laying hen performance, egg quality, and health.


Aflatoxin B1/analysis , Animal Feed/analysis , Bentonite/administration & dosage , Cell Wall , Chickens/growth & development , Dietary Supplements , Eggs , Ochratoxins/analysis , Trichothecenes/analysis , Yeasts , Aflatoxin B1/toxicity , Animal Feed/microbiology , Animal Feed/toxicity , Animal Husbandry , Animals , Chickens/microbiology , Female , Food Microbiology , Ochratoxins/toxicity , Trichothecenes/toxicity
4.
Front Microbiol ; 11: 618144, 2020.
Article En | MEDLINE | ID: mdl-33519778

The present study aimed to investigate the effects of organic acids (OA) as alternatives for antibiotic growth promoters (AGP) on growth performance, intestinal structure, as well as intestinal microbial composition and short-chain fatty acids (SCFAs) profiles in broilers. A total of 336 newly hatched male Arbor Acres broiler chicks were randomly allocated into 3 dietary treatments including the basal diet [negative control (NC)], the basal diet supplemented with 5 mg/kg flavomycin, and the basal diet supplemented with OA feed additives. Each treatment had eight replicates with 14 birds each. The results showed that AGP and OA promoted growth during day 22-42 compared with the NC group (P < 0.05). OA significantly increased the jejunal goblet cell density and ileal villus height on day 42 compared with the NC group (P < 0.05). Meanwhile, OA up-regulated the mRNA expression of jejunal barrier genes (Claudin-3 and ZO-1) relative to the NC group (P < 0.05). Significant changes of microbiota induced by the OA were also found on day 42 (P < 0.05). Several SCFAs-producing bacteria like Ruminococcaceae, Christensenellaceae, and Peptococcaceae affiliated to the order Clostridiales were identified as biomarkers of the OA group. Higher concentrations of SCFAs including formic acid and butyric acid were observed in the cecum of OA group (P < 0.05). Simultaneously, the abundance of family Ruminococcaceae showed highly positive correlations with the body weight and mRNA level of ZO-1 on day 42 (P < 0.05). However, AGP supplementation had the higher mRNA expression of Claudin-2, lower goblet cell density of jejunum, and decreased Firmicutes to Bacteroidetes ratio, suggesting that AGP might have a negative impact on intestinal immune and microbiota homeostasis. In conclusion, the OA improved growth performance, intestinal morphology and barrier function in broilers, which might be attributed to the changes of intestinal microbiota, particularly the enrichment of SCFAs-producing bacteria, providing a more homeostatic and healthy intestinal microecology.

5.
Front Physiol ; 10: 1418, 2019.
Article En | MEDLINE | ID: mdl-31803069

The objectives of this study were to determine the protective effects of organic acids (OA) in broilers exposed to Salmonella Pullorum challenge at early stage and to explore the potential benefits of OA by metabolomics analysis. The treatment groups included non-challenged, S. Pullorum-challenged, challenged group supplemented with virginiamycin, challenged group supplemented with OA in drinking water, challenged group supplemented with OA in feed, and challenged group supplemented with OA in combination in drinking water and feed. Results showed that early Salmonella challenge induced an acute systemic infection of broilers in the starter phase, followed by the grower phase without triggering clinical signs. OA supplementation promoted growth during the grower phase, and while OA in water contributed more, the positive effects of OA in combination were comparable to those of virginiamycin supplementation in challenged birds. Furthermore, OA could modulate the systemic metabolic perturbation caused by challenge as it alleviated stress responses mediated by steroid hormone, potentially attenuated antioxidant or immune defense, and modified intestinal microbiota metabolism. These results show a metabolic mechanism that may partly explain the potential benefits of OA in Salmonella challenged birds, and may contribute to the use of OA to control or reduce S. Pullorum infection in farm animals.

...