Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Healthc Mater ; : e2400501, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38817106

RESUMEN

In response to the increasing demand for spheroid-based cancer research, the importance of developing integrated platforms that can simultaneously facilitate high-throughput spheroid production and multiplexed analysis is emphasized. In addition, the understanding of how the size and cellular composition of tumors directly influence their internal structures and functionalities underlines the critical need to produce spheroids of diverse sizes and compositions on a large scale. To address this rising demand, this work presents a configurable and linkable in vitro three-dimensional (3D) cell culture kit (CLiCK) for spheroids, termed CLiCK-Spheroid. This platform consists of three primary components: a hanging drop microarray (HDMA), a concave pillar microarray (CPMA), and gradient blocks. The HDMA alone produces a homogeneous spheroid array, while its combination with the gradient block enables one-step generation of a size-gradient spheroid array. Using the size-gradient spheroid arrays, the occurrence of necrotic cores based on spheroid size is demonstrated. Additionally, spheroids in a single batch can be conveniently compartmentalized and regrouped using a CPMA, enhancing the versatility of spheroid arrays and enabling multiplexed drug treatments. By combining the different assembly methods, this work has achieved high-throughput production of cell composition-gradient spheroid arrays, with noticeable variations in morphology and vascularization based on cell compositions.

2.
Immunity ; 56(9): 2105-2120.e13, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37527657

RESUMEN

Childhood neglect and/or abuse can induce mental health conditions with unknown mechanisms. Here, we identified stress hormones as strong inducers of astrocyte-mediated synapse phagocytosis. Using in vitro, in vivo, and human brain organoid experiments, we showed that stress hormones increased the expression of the Mertk phagocytic receptor in astrocytes through glucocorticoid receptor (GR). In post-natal mice, exposure to early social deprivation (ESD) specifically activated the GR-MERTK pathway in astrocytes, but not in microglia. The excitatory post-synaptic density in cortical regions was reduced in ESD mice, and there was an increase in the astrocytic engulfment of these synapses. The loss of excitatory synapses, abnormal neuronal network activities, and behavioral abnormalities in ESD mice were largely prevented by ablating GR or MERTK in astrocytes. Our work reveals the critical roles of astrocytic GR-MERTK activation in evoking stress-induced abnormal behaviors in mice, suggesting GR-MERTK signaling as a therapeutic target for stress-induced mental health conditions.


Asunto(s)
Astrocitos , Fagocitosis , Estrés Psicológico , Animales , Niño , Humanos , Ratones , Astrocitos/metabolismo , Tirosina Quinasa c-Mer/genética , Hormonas/metabolismo , Sinapsis/metabolismo , Estrés Psicológico/metabolismo
3.
Exp Mol Med ; 55(7): 1506-1519, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37394590

RESUMEN

Neurogenin 3 (NGN3) is a key transcription factor in the cell fate determination of endocrine progenitors (EPs) in the developing pancreas. Previous studies have shown that the stability and activity of NGN3 are regulated by phosphorylation. However, the role of NGN3 methylation is poorly understood. Here, we report that protein arginine methyltransferase-1 (PRMT1)-mediated arginine 65 methylation of NGN3 is required for the pancreatic endocrine development of human embryonic stem cells (hESCs) in vitro. We found that inducible PRMT1-knockout (P-iKO) hESCs did not differentiate from EPs into endocrine cells (ECs) in the presence of doxycycline. Loss of PRMT1 caused NGN3 accumulation in the cytoplasm of EPs and decreased the transcriptional activity of NGN3. We found that PRMT1 specifically methylates NGN3 arginine 65 and that this modification is a prerequisite for ubiquitin-mediated degradation. Our findings demonstrate that arginine 65 methylation of NGN3 is a key molecular switch in hESCs permitting their differentiation into pancreatic ECs.


Asunto(s)
Células Madre Embrionarias Humanas , Humanos , Células Madre Embrionarias Humanas/metabolismo , Metilación , Arginina/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Páncreas , Diferenciación Celular/genética , Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
4.
Mol Ther ; 31(5): 1480-1495, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-36932674

RESUMEN

Optogenetic techniques permit non-invasive, spatiotemporal, and reversible modulation of cellular activities. Here, we report a novel optogenetic regulatory system for insulin secretion in human pluripotent stem cell (hPSC)-derived pancreatic islet-like organoids using monSTIM1 (monster-opto-Stromal interaction molecule 1), an ultra-light-sensitive OptoSTIM1 variant. The monSTIM1 transgene was incorporated at the AAVS1 locus in human embryonic stem cells (hESCs) by CRISPR-Cas9-mediated genome editing. Not only were we able to elicit light-induced intracellular Ca2+ concentration ([Ca2+]i) transients from the resulting homozygous monSTIM1+/+-hESCs, but we also successfully differentiated them into pancreatic islet-like organoids (PIOs). Upon light stimulation, the ß-cells in these monSTIM1+/+-PIOs displayed reversible and reproducible [Ca2+]i transient dynamics. Furthermore, in response to photoexcitation, they secreted human insulin. Light-responsive insulin secretion was similarly observed in monSTIM1+/+-PIOs produced from neonatal diabetes (ND) patient-derived induced pluripotent stem cells (iPSCs). Under LED illumination, monSTIM1+/+-PIO-transplanted diabetic mice produced human c-peptide. Collectively, we developed a cellular model for the optogenetic control of insulin secretion using hPSCs, with the potential to be applied to the amelioration of hyperglycemic disorders.


Asunto(s)
Diabetes Mellitus Experimental , Células Madre Pluripotentes Inducidas , Células Secretoras de Insulina , Islotes Pancreáticos , Células Madre Pluripotentes , Humanos , Ratones , Animales , Secreción de Insulina , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Experimental/metabolismo , Islotes Pancreáticos/metabolismo , Células Madre Pluripotentes/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Organoides , Células Madre Pluripotentes Inducidas/metabolismo , Diferenciación Celular
5.
Mol Ther ; 31(4): 1002-1016, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36755495

RESUMEN

Fabry disease (FD), a lysosomal storage disorder, is caused by defective α-galactosidase (GLA) activity, which results in the accumulation of globotriaosylceramide (Gb3) in endothelial cells and leads to life-threatening complications such as left ventricular hypertrophy (LVH), renal failure, and stroke. Enzyme replacement therapy (ERT) results in Gb3 clearance; however, because of a short half-life in the body and the high immunogenicity of FD patients, ERT has a limited therapeutic effect, particularly in patients with late-onset disease or progressive complications. Because vascular endothelial cells (VECs) derived from FD-induced pluripotent stem cells display increased thrombospondin-1 (TSP1) expression and enhanced SMAD2 signaling, we screened for chemical compounds that could downregulate TSP1 and SMAD2 signaling. Fasudil reduced the levels of p-SMAD2 and TSP1 in FD-VECs and increased the expression of angiogenic factors. Furthermore, fasudil downregulated the endothelial-to-mesenchymal transition (EndMT) and mitochondrial function of FD-VECs. Oral administration of fasudil to FD mice alleviated several FD phenotypes, including LVH, renal fibrosis, anhidrosis, and heat insensitivity. Our findings demonstrate that fasudil is a novel candidate for FD therapy.


Asunto(s)
Enfermedad de Fabry , Animales , Ratones , Enfermedad de Fabry/tratamiento farmacológico , Enfermedad de Fabry/genética , Células Endoteliales/metabolismo , alfa-Galactosidasa/genética , Fenotipo , Terapia de Reemplazo Enzimático
6.
ACS Biomater Sci Eng ; 9(2): 680-692, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36580628

RESUMEN

Changes in the extracellular matrix (ECM) influence stem cell fate. When hESCs were differentiated on a thin layer of Matrigel coated onto PDMS (Matrigel_PDMS), they exhibited a substantial increase in focal adhesion and focal adhesion-associated proteins compared with those cultured on Matrigel coated onto TCPS (Matrigel_TCPS), resulting in YAP/TEF1 activation and ultimately promoting the transcriptional activities of pancreatic endoderm (PE)-associated genes. Interestingly, YAP activation in PE cells was mediated through integrin α3-FAK-CDC42-PP1A signaling rather than the typical Hippo signaling pathway. Furthermore, pancreatic islet-like organoids (PIOs) generated on Matrigel_PDMS secreted more insulin than those generated from Matrigel_TCPS. Electron micrographs revealed differential Matrigel architectures depending on the underlying substrate, resulting in varying cell-matrix anchorage resistance levels. Accordingly, the high apparent stiffness of the unique mucus-like network structure of Matrigel_PDMS was the critical factor that directly upregulated focal adhesion, thereby leading to better maturation of the pancreatic development of hESCs in vitro.


Asunto(s)
Células Madre Embrionarias Humanas , Humanos , Diferenciación Celular , Matriz Extracelular/metabolismo , Células Madre
7.
Stem Cell Res ; 66: 103001, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36516658

RESUMEN

Fabry disease (FD) is a lysosomal storage disorder caused by mutations in GLA gene. Here, GLA mutation (1268fs*1 (c.803_806del)) of FD iPSCs was corrected using the CRISPR-Cas9 gene editing system. The corrected (cor) FD-iPSCs retained normal morphology, karyotype, expression of pluripotency-associated markers, trilineage differentiation potential, and GLA activity. Thus, FD(cor)-iPSCs can be used as valuable tools to study the mechanism how GLA mutation1268fs*1 induces various pathophysiologic phenotypes in FD patients.


Asunto(s)
Enfermedad de Fabry , Células Madre Pluripotentes Inducidas , Humanos , alfa-Galactosidasa/genética , alfa-Galactosidasa/metabolismo , Enfermedad de Fabry/genética , Sistemas CRISPR-Cas/genética , Células Madre Pluripotentes Inducidas/metabolismo , Mutación/genética
8.
Int J Mol Sci ; 23(22)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36430334

RESUMEN

Noonan syndrome (NS) is a genetic disorder mainly caused by gain-of-function mutations in Src homology region 2-containing protein tyrosine phosphatase 2 (SHP2). Although diverse neurological manifestations are commonly diagnosed in NS patients, the mechanisms as to how SHP2 mutations induce the neurodevelopmental defects associated with NS remain elusive. Here, we report that cortical organoids (NS-COs) derived from NS-induced pluripotent stem cells (iPSCs) exhibit developmental abnormalities, especially in excitatory neurons (ENs). Although NS-COs develop normally in their appearance, single-cell transcriptomic analysis revealed an increase in the EN population and overexpression of cortical layer markers in NS-COs. Surprisingly, the EN subpopulation co-expressing the upper layer marker SATB2 and the deep layer maker CTIP2 was enriched in NS-COs during cortical development. In parallel with the developmental disruptions, NS-COs also exhibited reduced synaptic connectivity. Collectively, our findings suggest that perturbed cortical layer identity and impeded neuronal connectivity contribute to the neurological manifestations of NS.


Asunto(s)
Células Madre Pluripotentes Inducidas , Síndrome de Noonan , Humanos , Organoides , Síndrome de Noonan/genética , Encéfalo , Neuronas
9.
Stem Cell Reports ; 16(8): 1985-1998, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34242618

RESUMEN

Costello syndrome (CS) is an autosomal dominant disorder caused by mutations in HRAS. Although CS patients have skeletal abnormalities, the role of mutated HRAS in bone development remains unclear. Here, we use CS induced pluripotent stem cells (iPSCs) undergoing osteogenic differentiation to investigate how dysregulation of extracellular matrix (ECM) remodeling proteins contributes to impaired osteogenesis. Although CS patient-derived iPSCs develop normally to produce mesenchymal stem cells (MSCs), the resulting CS MSCs show defective osteogenesis with reduced alkaline phosphatase activity and lower levels of bone mineralization. We found that hyperactivation of SMAD3 signaling during the osteogenic differentiation of CS MSCs leads to aberrant expression of ECM remodeling proteins such as MMP13, TIMP1, and TIMP2. CS MSCs undergoing osteogenic differentiation also show reduced ß-catenin signaling. Knockdown of TIMPs permits normal differentiation of CS MSCs into osteoblasts and enhances ß-catenin signaling in a RUNX2-independent manner. Thus, this study demonstrates that enhanced TIMP expression induced by hyperactivated SMAD3 signaling impairs the osteogenic development of CS MSCs via an inactivation of ß-catenin signaling.


Asunto(s)
Diferenciación Celular/genética , Síndrome de Costello/genética , Proteínas de la Matriz Extracelular/genética , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Osteogénesis/genética , Fosfatasa Alcalina/metabolismo , Calcificación Fisiológica/genética , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Síndrome de Costello/metabolismo , Síndrome de Costello/patología , Proteínas de la Matriz Extracelular/metabolismo , Regulación de la Expresión Génica , Humanos , Osteoblastos/citología , Osteoblastos/metabolismo , Transducción de Señal/genética , Proteína smad3/genética , Proteína smad3/metabolismo , Inhibidor Tisular de Metaloproteinasa-1/genética , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
10.
J Med Genet ; 58(11): 767-777, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33051312

RESUMEN

BACKGROUND: ARID2 belongs to the Switch/sucrose non-fermenting complex, in which the genetic defects have been found in patients with dysmorphism, short stature and intellectual disability (ID). As the phenotypes of patients with ARID2 mutations partially overlap with those of RASopathy, this study evaluated the biochemical association between ARID2 and RAS-MAPK pathway. METHODS: The phenotypes of 22 patients with either an ARID2 heterozygous mutation or haploinsufficiency were reviewed. Comprehensive molecular analyses were performed using somatic and induced pluripotent stem cells (iPSCs) of a patient with ARID2 haploinsufficiency as well as using the mouse model of Arid2 haploinsufficiency by CRISPR/Cas9 gene editing. RESULTS: The phenotypic characteristics of ARID2 deficiency include RASopathy, Coffin-Lowy syndrome or Coffin-Siris syndrome or undefined syndromic ID. Transient ARID2 knockout HeLa cells using an shRNA increased ERK1 and ERK2 phosphorylation. Impaired neuronal differentiation with enhanced RAS-MAPK activity was observed in patient-iPSCs. In addition, Arid2 haploinsufficient mice exhibited reduced body size and learning/memory deficit. ARID2 haploinsufficiency was associated with reduced IFITM1 expression, which interacts with caveolin-1 (CAV-1) and inhibits ERK activation. DISCUSSION: ARID2 haploinsufficiency is associated with enhanced RAS-MAPK activity, leading to reduced IFITM1 and CAV-1 expression, thereby increasing ERK activity. This altered interaction might lead to abnormal neuronal development and a short stature.


Asunto(s)
Enanismo/genética , Discapacidad Intelectual/genética , Sistema de Señalización de MAP Quinasas/fisiología , Factores de Transcripción/genética , Anomalías Múltiples/etiología , Animales , Antígenos de Diferenciación/genética , Antígenos de Diferenciación/metabolismo , Encéfalo/anomalías , Encéfalo/fisiopatología , Caveolina 1/genética , Caveolina 1/metabolismo , Niño , Preescolar , Cara/anomalías , Femenino , Deformidades Congénitas de la Mano/etiología , Haploinsuficiencia , Heterocigoto , Humanos , Discapacidad Intelectual/etiología , Masculino , Ratones Noqueados , Micrognatismo/etiología , Mutación , Cuello/anomalías , Factores de Transcripción/metabolismo , Adulto Joven , Proteínas ras/genética , Proteínas ras/metabolismo
11.
Stem Cell Res Ther ; 11(1): 282, 2020 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-32669122

RESUMEN

An amendment to this paper has been published and can be accessed via the original article.

12.
Stem Cell Res Ther ; 11(1): 209, 2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32493428

RESUMEN

BACKGROUND: Noonan syndrome (NS) is a developmental disorder caused by mutations of Src homology 2 domain-containing protein tyrosine phosphatase 2 (SHP2). Although NS patients have diverse neurological manifestations, the mechanisms underlying the involvement of SHP2 mutations in neurological dysfunction remain elusive. METHODS: Induced pluripotent stem cells generated from dermal fibroblasts of three NS-patients (NS-iPSCs) differentiated to the neural cells by using two different culture systems, 2D- and 3D-cultured systems in vitro. RESULTS: Here we represent that SHP2 mutations cause aberrant neural development. The NS-iPSCs exhibited impaired development of EBs in which BMP and TGF-ß signalings were activated. Defective early neuroectodermal development of NS-iPSCs recovered by inhibition of both signalings and further differentiated into NPCs. Intriguingly, neural cells developed from NS-NPCs exhibited abundancy of the glial cells, neurites of neuronal cells, and low electrophysiological property. Those aberrant phenotypes were also detected in NS-cerebral organoids. SHP2 inhibition in the NS-NPCs and NS-cerebral organoids ameliorated those anomalies such as biased glial differentiation and low neural activity. CONCLUSION: Our findings demonstrate that SHP2 mutations contribute to precocious gliogenesis in NS-iPSCs during neural development in vitro.


Asunto(s)
Células Madre Pluripotentes Inducidas , Síndrome de Noonan , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Mutación , Síndrome de Noonan/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Transducción de Señal
13.
EBioMedicine ; 52: 102633, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31981984

RESUMEN

BACKGROUND: Fabry disease (FD) is a recessive X-linked lysosomal storage disorder caused by α-galactosidase A (GLA) deficiency. Although the mechanism is unclear, GLA deficiency causes an accumulation of globotriaosylceramide (Gb3), leading to vasculopathy. METHODS: To explore the relationship between the accumulation of Gb3 and vasculopathy, induced pluripotent stem cells generated from four Fabry patients (FD-iPSCs) were differentiated into vascular endothelial cells (VECs). Genome editing using CRISPR-Cas9 system was carried out to correct the GLA mutation or to delete Thrombospondin-1 (TSP-1). Global transcriptomes were compared between wild-type (WT)- and FD-VECs by RNA-sequencing analysis. FINDINGS: Here, we report that overexpression of TSP-1 contributes to the dysfunction of VECs in FD. VECs originating from FD-iPSCs (FD-VECs) showed aberrant angiogenic functionality even upon treatment with recombinant α-galactosidase. Intriguingly, FD-VECs produced more p-SMAD2 and TSP-1 than WT-VECs. We also found elevated TSP-1 in the peritubular capillaries of renal tissues biopsied from FD patients. Inhibition of SMAD2 signaling or knock out of TSP-1 (TSP-1-/-) rescues normal vascular functionality in FD-VECs, like in gene-corrected FD-VECs. In addition, the enhanced oxygen consumption rate is reduced in TSP-1-/- FD-VECs. INTERPRETATION: The overexpression of TSP-1 secondary to Gb3 accumulation is primarily responsible for the observed FD-VEC dysfunction. Our findings implicate dysfunctional VEC angiogenesis in the peritubular capillaries in some of the complications of Fabry disease. FUNDING: This study was supported by grant 2018M3A9H1078330 from the National Research Foundation of the Republic of Korea.


Asunto(s)
Células Endoteliales/metabolismo , Enfermedad de Fabry/genética , Enfermedad de Fabry/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Trombospondina 1/genética , Adulto , Alelos , Animales , Sistemas CRISPR-Cas , Células Cultivadas , Modelos Animales de Enfermedad , Endotelio Vascular , Activación Enzimática , Enfermedad de Fabry/diagnóstico , Edición Génica , Expresión Génica , Perfilación de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Inmunohistoquímica , Inmunofenotipificación , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Modelos Biológicos , Mutación , Estrés Oxidativo , Fenotipo , Trombospondina 1/metabolismo , alfa-Galactosidasa/genética , alfa-Galactosidasa/metabolismo
14.
ACS Biomater Sci Eng ; 6(2): 813-821, 2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33464850

RESUMEN

Human iPSC-derived mesenchymal stem cells (iMSCs) are an alternative to primary mesenchymal stem cells (MSCs), which have been a limited supply, and have attracted a great deal of interest as a promising cell source in cell-based therapy. However, despite their enormous therapeutic potential, it has been difficult to translate this potential into clinical applications due to the short viability duration of transplanted iMSCs. Therefore, to maximize the therapeutic effects of iMSCs, it is extremely important to extend their retention rate during and even after the transplantation. In this study, we developed a new extracellular matrix (ECM)-coating method involving the mild reduction of the cell surface. The reduction of disulfide bonds around the cell membrane enhanced the coating efficiency without a decrease in the viability and differentiation potential of iMSCs. We then induced ECM-coated single iMSCs to form three-dimensional spheroids via self-assembly of the aggregates within a physically confined microenvironment. The spheroids exhibited longer maintenance of the survival rate. Nanometric ECM coating of the cell membrane is a new approach as a key for resolving the conventional challenges of cell-based therapy.


Asunto(s)
Matriz Extracelular , Células Madre Pluripotentes Inducidas , Células Madre Mesenquimatosas , Diferenciación Celular , Humanos , Fosfinas
15.
Int J Mol Sci ; 18(12)2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29194391

RESUMEN

Cardiofaciocutaneous (CFC) syndrome is a rare genetic disorder caused by mutations in the extracellular signal-regulated kinase (ERK) signaling. However, little is known about how aberrant ERK signaling is associated with the defective bone development manifested in most CFC syndrome patients. In this study, induced pluripotent stem cells (iPSCs) were generated from dermal fibroblasts of a CFC syndrome patient having rapidly accelerated fibrosarcoma kinase B (BRAF) gain-of-function mutation. CFC-iPSCs were differentiated into mesenchymal stem cells (CFC-MSCs) and further induced to osteoblasts in vitro. The osteogenic defects of CFC-MSCs were revealed by alkaline phosphatase activity assay, mineralization assay, quantitative real-time polymerase chain reaction (qRT-PCR), and western blotting. Osteogenesis of CFC-MSCs was attenuated compared to wild-type (WT)-MSCs. In addition to activated ERK signaling, increased p-SMAD2 and decreased p-SMAD1 were observed in CFC-MSCs during osteogenesis. The defective osteogenesis of CFC-MSCs was rescued by inhibition of ERK signaling and SMAD2 signaling or activation of SMAD1 signaling. Importantly, activation of ERK signaling and SMAD2 signaling or inhibition of SMAD1 signaling recapitulated the impaired osteogenesis in WT-MSCs. Our findings indicate that SMAD2 signaling and SMAD1 signaling as well as ERK signaling are responsible for defective early bone development in CFC syndrome, providing a novel insight on the pathological mechanism and therapeutic targets.


Asunto(s)
Displasia Ectodérmica/patología , Insuficiencia de Crecimiento/patología , Cardiopatías Congénitas/patología , Células Madre Pluripotentes Inducidas/citología , Células Madre Mesenquimatosas/citología , Osteoblastos/citología , Proteínas Proto-Oncogénicas B-raf/genética , Animales , Diferenciación Celular , Línea Celular , Displasia Ectodérmica/genética , Displasia Ectodérmica/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Facies , Insuficiencia de Crecimiento/genética , Insuficiencia de Crecimiento/metabolismo , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones , Mutación , Osteoblastos/metabolismo , Osteogénesis , Fosforilación , Transducción de Señal , Proteína Smad1/metabolismo , Proteína Smad2/metabolismo
16.
Toxicology ; 387: 1-9, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28645575

RESUMEN

Drug-induced liver injury (DILI) is a leading cause of liver disease and a key safety factor during drug development. In addition to the initiation events of drug-specific hepatotoxicity, dysregulated immune responses have been proposed as major pathological events of DILI. Thus, there is a need for a reliable cell culture model with which to assess drug-induced immune reactions to predict hepatotoxicity for drug development. To this end, stem cell-derived hepatocytes have shown great potentials. Here we report that hepatocyte-like cells derived from human embryonic stem cells (hES-HLCs) can be used to evaluate drug-induced hepatotoxic immunological events. Treatment with acetaminophen significantly elevated the levels of inflammatory cytokines by hES-HLCs. Moreover, three human immune cell lines, Jurkat, THP-1, and NK92MI, were activated when cultured in conditioned medium obtained from acetaminophen-treated hES-HLCs. To further validate, we tested thiazolidinedione (TZD) class, antidiabetic drugs, including troglitazone withdrawn from the market because of severe idiosyncratic drug hepatotoxicity. We found that TZD drug treatment to hES-HLCs resulted in the production of pro-inflammatory cytokines and eventually associated immune cell activation. In summary, our study demonstrates for the first time the potential of hES-HLCs as an in vitro model system for assessment of drug-induced as well as immune-mediated hepatotoxicity.


Asunto(s)
Acetaminofén/toxicidad , Analgésicos no Narcóticos/toxicidad , Bioensayo , Diferenciación Celular , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Células Madre Embrionarias/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hipoglucemiantes/toxicidad , Tiazolidinedionas/toxicidad , Pruebas de Toxicidad/métodos , Supervivencia Celular/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/inmunología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Citocinas/inmunología , Citocinas/metabolismo , Células Madre Embrionarias/inmunología , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/patología , Hepatocitos/inmunología , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Mediadores de Inflamación/inmunología , Mediadores de Inflamación/metabolismo , Células Jurkat , Fenotipo , Medición de Riesgo
17.
Int J Stem Cells ; 10(1): 28-37, 2017 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-28531914

RESUMEN

Although microRNAs have emerged as key regulators in diverse cellular processes, the roles of microRNAs are poorly understood in human embryonic stem cells (hESCs) during differentiation into specialized cell types. In this study, we used a microRNA array with 799 human microRNA probes to examine the expression profiles of microRNAs in hESCs during differentiation into endodermal and mesodermal lineages in vitro. Among the microRNAs analyzed, 7 and 20 microRNAs were enriched in the developmental process of hESCs into mesodermal and endodermal lineages, respectively. In particular, the expression levels of miR-200 family, which is known to regulate the epithelial to mesenchymal transition (EMT), gradually increased in hESCs during differentiation into hepatocytes while they gradually decreased during differentiation into vascular endothelial cells. Downregulation of ZEB1, a direct target of miR-200 family, and E-CADHERIN, a target protein of ZEB1, was observed in hESCs during differentiation into endodermal and mesodermal lineages, respectively. These results indicate that miR-200 family has an important role in determining the cell fate between endodermal and mesodermal lineages from the pluripotent state.

18.
Sci Rep ; 7: 41840, 2017 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-28165490

RESUMEN

Isolating actively proliferating cardioblasts is the first crucial step for cardiac regeneration through cell implantation. However, the origin and identity of putative cardioblasts are still unclear. Here, we uncover a novel class of cardiac lineage cells, PDGFRα+Flk1- cardioblasts (PCBs), from mouse and human pluripotent stem cells induced using CsAYTE, a combination of the small molecules Cyclosporin A, the rho-associated coiled-coil kinase inhibitor Y27632, the antioxidant Trolox, and the ALK5 inhibitor EW7197. This novel population of actively proliferating cells is cardiac lineage-committed but in a morphologically and functionally immature state compared to mature cardiomyocytes. Most important, most of CsAYTE-induced PCBs spontaneously differentiated into functional αMHC+ cardiomyocytes (M+CMs) and could be a potential cellular resource for cardiac regeneration.


Asunto(s)
Diferenciación Celular , Mioblastos/citología , Miocitos Cardíacos/citología , Células Madre Pluripotentes/citología , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Amidas/farmacología , Compuestos de Anilina/farmacología , Animales , Antioxidantes/farmacología , Línea Celular , Células Cultivadas , Cromanos/farmacología , Ciclosporina/farmacología , Inhibidores Enzimáticos/farmacología , Humanos , Ratones , Mioblastos/metabolismo , Miocitos Cardíacos/metabolismo , Células Madre Pluripotentes/efectos de los fármacos , Células Madre Pluripotentes/metabolismo , Piridinas/farmacología , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Triazoles/farmacología
19.
Sci Rep ; 6: 35145, 2016 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-27731367

RESUMEN

Insulin secretion is elaborately modulated in pancreatic ß cells within islets of three-dimensional (3D) structures. Using human pluripotent stem cells (hPSCs) to develop islet-like structures with insulin-producing ß cells for the treatment of diabetes is challenging. Here, we report that pancreatic islet-like clusters derived from hESCs are functionally capable of glucose-responsive insulin secretion as well as therapeutic effects. Pancreatic hormone-expressing endocrine cells (ECs) were differentiated from hESCs using a step-wise protocol. The hESC-derived ECs expressed pancreatic endocrine hormones, such as insulin, somatostatin, and pancreatic polypeptide. Notably, dissociated ECs autonomously aggregated to form islet-like, 3D structures of consistent sizes (100-150 µm in diameter). These EC clusters (ECCs) enhanced insulin secretion in response to glucose stimulus and potassium channel inhibition in vitro. Furthermore, ß cell-deficient mice transplanted with ECCs survived for more than 40 d while retaining a normal blood glucose level to some extent. The expression of pancreatic endocrine hormones was observed in tissues transplanted with ECCs. In addition, ECCs could be generated from human induced pluripotent stem cells. These results suggest that hPSC-derived, islet-like clusters may be alternative therapeutic cell sources for treating diabetes.


Asunto(s)
Glucosa/metabolismo , Islotes Pancreáticos/citología , Islotes Pancreáticos/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Animales , Glucemia/metabolismo , Agregación Celular , Diferenciación Celular , Células Cultivadas , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/terapia , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Humanos , Técnicas In Vitro , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Trasplante de Islotes Pancreáticos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Organoides/citología , Organoides/metabolismo
20.
Hepatology ; 64(2): 616-31, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27178735

RESUMEN

UNLABELLED: During liver injury, hepatocytes secrete exosomes that include diverse types of self-RNAs. Recently, self-noncoding RNA has been recognized as an activator of Toll-like receptor 3 (TLR3). However, the roles of hepatic exosomes and TLR3 in liver fibrosis are not yet fully understood. Following acute liver injury and early-stage liver fibrosis induced by a single or 2-week injection of carbon tetrachloride (CCl4 ), increased interleukin (IL)-17A production was detected primarily in hepatic γδ T cells in wild-type (WT) mice. However, liver fibrosis and IL-17A production by γδ T cells were both significantly attenuated in TLR3 knockout (KO) mice compared with WT mice. More interestingly, IL-17A-producing γδ T cells were in close contact with activated hepatic stellate cells (HSCs), suggesting a role for HSCs in IL-17A production by γδ T cells. In vitro treatments with exosomes derived from CCl4 -treated hepatocytes significantly increased the expression of IL-17A, IL-1ß, and IL-23 in WT HSCs but not in TLR3 KO HSCs. Furthermore, IL-17A production by γδ T cells was substantially increased upon coculturing with exosome-treated WT HSCs or conditioned medium from TLR3-activated WT HSCs. However, similar increases were not detected when γδ T cells were cocultured with exosome-treated HSCs from IL-17A KO or TLR3 KO mice. Using reciprocal bone marrow transplantation between WT and TLR3 KO mice, we found that TLR3 deficiency in HSCs contributed to decreased IL-17A production by γδ T cells, as well as liver fibrosis. CONCLUSION: In liver injury, the exosome-mediated activation of TLR3 in HSCs exacerbates liver fibrosis by enhancing IL-17A production by γδ T cells, which might be associated with HSC stimulation by unknown self-TLR3 ligands from damaged hepatocytes. Therefore, TLR3 might be a novel therapeutic target for liver fibrosis. (Hepatology 2016;64:616-631).


Asunto(s)
Células Estrelladas Hepáticas/metabolismo , Interleucina-17/metabolismo , Cirrosis Hepática/metabolismo , Linfocitos T/metabolismo , Receptor Toll-Like 3/metabolismo , Animales , Intoxicación por Tetracloruro de Carbono/metabolismo , Exosomas , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA