Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 47
1.
Neurol Res ; 46(4): 367-377, 2024 Apr.
Article En | MEDLINE | ID: mdl-38468466

OBJECTIVES: The search for drugs that can protect the brain tissue and reduce nerve damage in acute ischemic stroke has emerged as a research hotspot. We investigated the potential protective effects and mechanisms of action of dihydroergotamine against ischemic stroke. METHODS: C57BL/6 mice were subjected to middle cerebral artery occlusion (MCAO), and dihydroergotamine at a dose of 10 mg/kg/day was intraperitoneally injected for 14 days. Adhesive removal and beam walking tests were conducted 1, 3, 5, 7, 10, and 14 days after MCAO surgery. Thereafter, the mechanism by which dihydroergotamine regulates microglia/macrophage polarization and inflammation and imparts ischemic stroke protection was studied using enzyme-linked immunosorbent assay, immunofluorescence staining, and western blotting. RESULTS: From the perspective of a drug repurposing strategy, dihydroergotamine was found to inhibit oxygen-glucose deprivation damage to neurons, significantly improve cell survival rate, and likely exert a protective effect on ischemic brain injury. Dihydroergotamine significantly improved neural function scores and survival rates and reduced brain injury severity in mice. Furthermore, dihydroergotamine manifests its protective effect on ischemic brain injury by reducing the expression of TNF-α and IL-1ß in mouse ischemic brain tissue, inhibiting the polarization of microglia/macrophage toward the M1 phenotype and promoting polarization toward the M2 phenotype. CONCLUSION: This study is the first to demonstrate the protective effect of dihydroergotamine, a first-line treatment for migraine, against ischemic nerve injury in vitro and in vivo.


Brain Injuries , Brain Ischemia , Ischemic Stroke , Stroke , Mice , Animals , Microglia , Stroke/drug therapy , Brain Ischemia/drug therapy , Brain Ischemia/prevention & control , Dihydroergotamine/pharmacology , Dihydroergotamine/therapeutic use , Mice, Inbred C57BL , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/drug therapy , Macrophages , Inflammation/drug therapy
2.
CNS Neurosci Ther ; 30(3): e14676, 2024 03.
Article En | MEDLINE | ID: mdl-38488446

AIM: To explore the neuroprotective effects of ARA290 and the role of ß-common receptor (ßCR) in a mouse model of middle cerebral artery occlusion (MCAO). METHODS: This study included male C57BL/6J mice that underwent MCAO and reperfusion. The neuroprotective effect of ARA290 on MCAO-induced brain injury was investigated using neurological function tests (Longa and modified neurological severity score). Cerebral infarction was examined by 2, 3, 5-triphenyl tetrazolium chloride staining, neuronal apoptosis was assessed by immunofluorescence staining, blood parameters were measured using a flow cytometry-based automated hematology analyzer, liquid chromatography with tandem mass spectrometry was used to identify the serum metabolomics signature, inflammatory cytokines and liver index were detected by commercially available kits, and the protein levels of the erythropoietin (EPO) receptor and ßCR were measured by western blot. RESULTS: ARA290 exerted a qualitatively similar neuroprotective effect after MCAO as EPO. ARA290 significantly reduced neuronal apoptosis and the level of inflammatory cytokines in the brain tissue. However, ARA290's neuroprotective effect was significantly suppressed following the injection of siRNA against ßCR. CONCLUSION: ARA290 provided a neuroprotective effect via ßCR in cerebral ischemic mice without causing erythropoiesis. This study provides novel insights into the role of ARA290 in ischemic stroke intervention.


Brain Ischemia , Erythropoietin , Ischemic Stroke , Neuroprotective Agents , Oligopeptides , Reperfusion Injury , Stroke , Mice , Male , Animals , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Mice, Inbred C57BL , Erythropoietin/therapeutic use , Stroke/drug therapy , Stroke/genetics , Peptides , Infarction, Middle Cerebral Artery/drug therapy , Cytokines , Brain , Brain Ischemia/drug therapy
3.
CNS Neurosci Ther ; 30(2): e14639, 2024 02.
Article En | MEDLINE | ID: mdl-38380783

AIMS: Alleviating neurological dysfunction caused by acute ischemic stroke (AIS) remains intractable. Given Annexin A6 (ANXA6)'s potential in promoting axon branching and repairing cell membranes, the study aimed to explore ANXA6's potential in alleviating AIS-induced neurological dysfunction. METHODS: A mouse middle cerebral artery occlusion model was established. Brain and plasma ANXA6 levels were detected at different timepoints post ischemia/reperfusion (I/R). We overexpressed and down-regulated brain ANXA6 and evaluated infarction volume, neurological function, and synaptic plasticity-related proteins post I/R. Plasma ANXA6 levels were measured in patients with AIS and healthy controls, investigating ANXA6 expression's clinical significance. RESULTS: Brain ANXA6 levels initially decreased, gradually returning to normal post I/R; plasma ANXA6 levels showed an opposite trend. ANXA6 overexpression significantly decreased the modified neurological severity score (p = 0.0109) 1 day post I/R and the infarction area at 1 day (p = 0.0008) and 7 day (p = 0.0013) post I/R, and vice versa. ANXA6 positively influenced synaptic plasticity, upregulating synaptophysin (p = 0.006), myelin basic protein (p = 0.010), neuroligin (p = 0.078), and tropomyosin-related kinase B (p = 0.150). Plasma ANXA6 levels were higher in patients with AIS (1.969 [1.228-3.086]) compared to healthy controls (1.249 [0.757-2.226]) (p < 0.001), that served as an independent risk factor for poor AIS outcomes (2.120 [1.563-3.023], p < 0.001). CONCLUSIONS: This study is the first to suggest that ANXA6 enhances synaptic plasticity and protects against transient cerebral ischemia.


Ischemic Stroke , Reperfusion Injury , Animals , Humans , Mice , Annexin A6/metabolism , Infarction , Neuronal Plasticity
4.
Ibrain ; 9(3): 258-269, 2023.
Article En | MEDLINE | ID: mdl-37786756

A reliable animal model is essential for ischemic stroke research. The implications of the external carotid artery (ECA) transection or common carotid artery (CCA) ligation have been described. Thus, a modified animal model, the CCA-repair model, has been established, and studies have shown that the CCA-repair model has potential advantages over the CCA-ligation model. However, whether the CCA-repair model is superior to the ECA-ligation model remains unclear. Sixty male C57BL/6 mice were randomly assigned to establish the CCA-repair (n = 34) or ECA-ligation (n = 26) models. Cerebral blood flow before middle cerebral artery occlusion (MCAO), immediately after MCAO and reperfusion were monitored and the operation duration, postoperative body weight, and food intake within 7 days, and the number of intraoperative and postoperative deaths within 7 days were recorded in the two models. Modified neurological severity scores and Bederson (0-5) scores were used to evaluate postoperative neurological function deficits on Days 1/3/5/7. 2,3,5-Triphenyltetrazolium chloride staining was used to quantify lesion volume on Day 7 after the operation. We found the establishment of the CCA-repair model required a longer total operation duration (p = 0.0175), especially the operation duration of reperfusion (p < 0.0001). However, there was no significant difference in body weight and food intake development, lesion volume and intragroup variability, neurological function deficits, mortality, and survival probability between the two groups. The CCA-repair model has no significant advantage over the ECA-ligation model. The ECA-ligation model is still a better choice for focal cerebral ischemia.

5.
Quant Imaging Med Surg ; 13(10): 6615-6626, 2023 Oct 01.
Article En | MEDLINE | ID: mdl-37869311

Background: Surgical cerebral revascularization is recommended for treating pediatric moyamoya disease (MMD). However, whether unilateral combined bypass surgery can cause disease progression on the contralateral side is uncertain. The study aimed to investigate the vascular architecture and regional cerebral blood flow (rCBF) status of patients with pediatric MMD after successful unilateral combined bypass surgery and to identify the possible risk factors. Methods: Pediatric patients diagnosed with MMD and admitted to Xuanwu Hospital who underwent combined bypass surgery between 2019 and 2021 were enrolled. Digital subtraction angiography (DSA) and magnetic resonance imaging (MRI) with arterial spin labeling (ASL) were performed to investigate the vascular architecture and rCBF during surgery and at short-term follow-up. Suzuki's angiographic staging and moyamoya vessel grading system were both used. Progression was defined as an increase in either Suzuki stage or moyamoya vessel grade detected after unilateral surgery. All analyses were performed with conventional statistic methods. Results: A total of 27 successive patients with a median age of 8 [interquartile range (IQR), 5-14] years old were identified. On the non-operated (non-OP) side, 11 (40.7%) patients demonstrated progression, all of whom showed an increase in the moyamoya vessel grade, and 5 also displayed Suzuki stage progression during the median 4.7 (IQR, 3.7-5.7) months follow-up. However, rCBF barely changed on the non-OP side compared to preoperation [preoperation: median, 49.6, (IQR, 42.9-61.1) mL/100 g/min; postoperation: median, 50.2, (IQR, 43.5-59.3) mL/100 g/min; P=0.445]. Conclusions: Combined bypass surgery might accelerate the radiological progression on the contralateral side, which occurs before the decline of rCBF. Those with earlier Suzuki stage MMD of the non-OP side are prone to rapid progression after unilateral combined revascularization.

6.
J Am Heart Assoc ; 12(17): e029817, 2023 09 05.
Article En | MEDLINE | ID: mdl-37655472

Background Thrombolysis and endovascular thrombectomy are the primary treatment for ischemic stroke. However, due to the limited time window and the occurrence of adverse effects, only a small number of patients can genuinely benefit from recanalization. Intraarterial injection of rtPA (recombinant tissue plasminogen activator) based on arterial thrombectomy could improve the prognosis of patients with acute ischemic stroke, but it could not reduce the incidence of recanalization-related adverse effects. Recently, selective brain hypothermia has been shown to offer neuroprotection against stroke. To enhance the recanalization rate of ischemic stroke and reduce the adverse effects such as tiny thrombosis, brain edema, and hemorrhage, we described for the first time a combined approach of hypothermia and thrombolysis via intraarterial hypothermic rtPA. Methods and Results We initially established the optimal regimen of hypothermic rtPA in adult rats subjected to middle cerebral artery occlusion. Subsequently, we explored the mechanism of action mediating hypothermic rtPA by probing reduction of brain tissue temperature, attenuation of blood-brain barrier damage, and sequestration of inflammation coupled with untargeted metabolomics. Hypothermic rtPA improved neurological scores and reduced infarct volume, while limiting hemorrhagic transformation in middle cerebral artery occlusion rats. These therapeutic outcomes of hypothermic rtPA were accompanied by reduced brain temperature, glucose metabolism, and blood-brain barrier damage. A unique metabolomic profile emerged in hypothermic rtPA-treated middle cerebral artery occlusion rats characterized by downregulated markers for energy metabolism and inflammation. Conclusions The innovative use of hypothermic rtPA enhances their combined, as opposed to stand-alone, neuroprotective effects, while reducing hemorrhagic transformation in ischemic stroke.


Drug-Related Side Effects and Adverse Reactions , Hypothermia , Ischemic Stroke , Stroke , Animals , Rats , Tissue Plasminogen Activator , Ischemic Stroke/drug therapy , Neuroprotection , Infarction, Middle Cerebral Artery/drug therapy , Stroke/prevention & control , Inflammation , Thrombolytic Therapy
7.
CNS Neurosci Ther ; 29(8): 2086-2100, 2023 08.
Article En | MEDLINE | ID: mdl-37186176

BACKGROUND: Rapid diagnosis of acute ischemic stroke (AIS) patients is still challenging, and reliable biomarkers are needed. Noncoding RNAs are important for many physiological activities, among which circular RNAs (circRNAs) have been proven to be more tissue-specific and conservative. Many recent studies found the potential of circRNAs as biomarkers for many diseases, including cardiovascular diseases, cancers, and ischemic stroke. This systemic review and meta-analysis aimed to identify circRNAs as potential biomarkers for AIS. METHODS: This study has been prospectively registered in PROSPERO (Registration No. 11 CRD42021288033). Published literature comparing circRNA expression profiles between AIS and non-AIS in human and animal models were retrieved from the articles published by January 2023 in major databases. We descriptively summarized the included studies, conducted meta-analysis under a random effects model, and did bioinformatics analysis including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. RESULTS: Totally 23 studies were included, reporting 18 distinctive upregulated and 20 distinctive downregulated circRNAs. Diagnostic meta-analysis indicated discriminative ability of the circRNAs. Furthermore, circRNA HECTD1, circRNA DLGAP4, circRNA CDC14A, circRNA SCMH1, and circRNA TLK1 were reported with the same regulation trend in more than one study (animal studies included). GO and KEGG enrichment analyses indicated that the target genes of these five circRNAs were enriched in regulating cell proliferation, apoptosis, and oxidative stress. CONCLUSIONS: This study demonstrates that circRNAs (circRNA HECTD1, circRNA DLGAP4, circRNA CDC14A, circRNA SCMH1, and circRNA TLK1) generally are promising as potential biomarkers for AIS. However, due to the limited number of studies, diagnostic value of individual circRNA could not be validated. More in vitro and in vivo functional studies are needed.


Ischemic Stroke , MicroRNAs , Stroke , Animals , Humans , RNA, Circular/genetics , RNA, Circular/metabolism , Ischemic Stroke/diagnosis , Ischemic Stroke/genetics , Stroke/diagnosis , Stroke/genetics , Biomarkers/metabolism , MicroRNAs/genetics , RNA/genetics , RNA/metabolism , Gene Expression Profiling , Protein Serine-Threonine Kinases/genetics
8.
J Neuroinflammation ; 20(1): 70, 2023 Mar 11.
Article En | MEDLINE | ID: mdl-36906528

BACKGROUND: Neutrophil serine proteinases (NSPs), released by activated neutrophils, are key proteins involved in the pathophysiologic processes of stroke. NSPs are also implicated in the process and response of thrombolysis. This study aimed to analyze three NSPs (neutrophil elastase, cathepsin G, and proteinase 3) in relation to acute ischemic stroke (AIS) outcomes and in relation to the outcomes of patients treated with intravenous recombinant tissue plasminogen activator (IV-rtPA). METHODS: Among 736 patients prospectively recruited at the stroke center from 2018 to 2019, 342 patients diagnosed with confirmed AIS were included. Plasma neutrophil elastase (NE), cathepsin G (CTSG), and proteinase 3 (PR3) concentrations were measured on admission. The primary endpoint was unfavorable outcome defined as modified Rankin Scale score 3-6 at 3 months, and the secondary endpoints were symptomatic intracerebral hemorrhage (sICH) within 48 h, and mortality within 3 months. In the subgroup of patients who received IV-rtPA, post-thrombolysis early neurological improvement (ENI) (defined as National Institutes of Health Stroke Scale score = 0 or decrease of ≥ 4 within 24 h after thrombolysis) was also included as the secondary endpoint. Univariate and multivariate logistic regression analyses were performed to evaluate the association between NSPs levels and AIS outcomes. RESULTS: Higher NE and PR3 plasma levels were associated with the 3-month mortality and 3-month unfavorable outcome. Higher NE plasma levels were also associated with the risk of sICH after AIS. After adjusting for potential confounders, plasma NE level > 229.56 ng/mL (odds ratio [OR] = 4.478 [2.344-8.554]) and PR3 > 388.77 ng/mL (OR = 2.805 [1.504-5.231]) independently predicted the 3-month unfavorable outcome. Regarding rtPA treatment, patients with NE plasma concentration > 177.22 ng/mL (OR = 8.931 [2.330-34.238]) or PR3 > 388.77 ng/mL (OR = 4.275 [1.045-17.491]) were over 4 times more likely to suffer unfavorable outcomes after rtPA treatment. The addition of NE and PR3 to clinical predictors of unfavorable functional outcome after AIS and the outcome after rtPA treatment improved discrimination as well as reclassification (integrated discrimination improvement = 8.2% and 18.1%, continuous net reclassification improvement = 100.0% and 91.8%, respectively). CONCLUSIONS: Plasma NE and PR3 are novel and independent predictors of 3-month functional outcomes after AIS. Plasma NE and PR3 also possess predictive value to identify patients with unfavorable outcomes after rtPA treatment. NE is probably an important mediator of the effects of neutrophils on stroke outcomes, which worth further investigation.


Brain Ischemia , Ischemic Stroke , Stroke , Humans , Tissue Plasminogen Activator/adverse effects , Fibrinolytic Agents/therapeutic use , Neutrophils , Leukocyte Elastase , Cathepsin G , Ischemic Stroke/drug therapy , Thrombolytic Therapy , Prospective Studies , Myeloblastin , Brain Ischemia/drug therapy , Treatment Outcome , Stroke/drug therapy , Cerebral Hemorrhage/drug therapy , Retrospective Studies
10.
Transl Stroke Res ; 14(4): 589-607, 2023 08.
Article En | MEDLINE | ID: mdl-35906328

Circulating neutrophils are activated shortly after stroke and in turn affect the fate of ischemic brain tissue, and microRNAs (miRNA) participate in regulating neuroinflammation. We probed the role of neutrophilic miRNA in ischemic stroke. miR-193a-5p was decreased in circulating neutrophils of acute ischemic stroke (AIS) patients and healthy controls. In another set of AIS patients treated with recombinant tissue plasminogen activator, higher neutrophilic miR-193a-5p levels were associated with favorable outcomes at 3 months and non-symptomatic intracerebral hemorrhage. An experimental stroke model and human neutrophil-like HL-60 cells were further transfected with agomiR-193a-5p/antagomiR-193a-5p or ubiquitin-conjugating enzyme V2 (UBE2V2)-siRNA prior to model induction for in vivo and in vitro studies. Results of 2,3,5-triphenyl tetrazolium chloride staining and neurological function evaluations at post-experimental stroke showed that intravenous agomiR-193a-5p transfusion protected against ischemic cerebral injury in the acute stage and promoted neurological recovery in the subacute stage. This protective role was suggested to correlate with neutrophil N2 transformation based on the N2-like neutrophil proportions in the bone marrow, peripheral blood, and spleen of the experimental stroke model and the measurement of neutrophil phenotype-associated molecule levels. Mechanistically, analyses indicated that UBE2V2 might be a target of miR-193a-5p. Cerebral injury and neuroinflammation aggravated by miR-193a-5p inhibition were reversed by UBE2V2 silencing. In conclusion, miR-193a-5p protects against cerebral ischemic injury by restoring neutrophil N2 phenotype-associated neuroinflammation suppression, likely, in part, via UBE2V2 induction.


Ischemic Stroke , MicroRNAs , Humans , Neutrophils , Neuroinflammatory Diseases , Tissue Plasminogen Activator , MicroRNAs/genetics
11.
Brain Circ ; 9(4): 240-250, 2023.
Article En | MEDLINE | ID: mdl-38284107

CONTEXT: Circulating neutrophils and long noncoding RNAs (lncRNAs) play various roles in intracranial atherosclerotic stenosis (ICAS). OBJECTIVE: Our study aimed to detect differentially expressed (DE) lncRNAs and mRNAs in circulating neutrophils and explore the pathogenesis of atherosclerosis from the perspective of neutrophils. METHODS: Nineteen patients with ICAS and 15 healthy controls were enrolled. The peripheral blood of the participants was collected, and neutrophils were separated. The expression profiles of lncRNAs and mRNAs in neutrophils from five patients and five healthy controls were obtained, and DE lncRNAs and mRNAs were selected. Six lncRNAs were selected and validated using quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and ceRNA and lncRNA-RNA binding protein (RBP)-mRNA networks were constructed. Correlation analysis between lncRNAs and mRNAs was performed. Functional enrichment annotations were also performed. RESULTS: Volcano plots and heat maps displayed the expression profiles and DE lncRNAs and mRNAs, respectively. The qRT-PCR results revealed that the four lncRNAs showed a tendency consistent with the expression profile, with statistical significance. The ceRNA network revealed three pairs of regulatory networks: lncRNA RP3-406A7.3-NAGLU, lncRNA HOTAIRM1-MVK/IL-25/GBF1/CNOT4/ANKK1/PLEKHG6, and lncRNA RP11-701H16.4-ZNF416. The lncRNA-RBP-mRNA network showed five pairs of regulatory networks: lncRNA RP11-701H16.4-TEK, lncRNA RP11-701H16.4-MED17, lncRNA SNHG19-NADH-ubiquinone oxidoreductase core subunit V1, lncRNA RP3-406A7.3-Angel1, and lncRNA HOTAIRM1-CARD16. CONCLUSIONS: Our study identified and verified four lncRNAs in neutrophils derived from peripheral blood, which may explain the transcriptional alteration of neutrophils during the pathophysiological process of ICAS. Our results provide insights for research related to the pathogenic mechanisms and drug design of ICAS.

12.
Front Pharmacol ; 13: 1003806, 2022.
Article En | MEDLINE | ID: mdl-36278201

There's no evidence demonstrating the association between noncoding RNAs levels before IV recombinant tissue plasminogen activator (rtPA) administration and the outcomes of acute ischemic stroke (AIS). 145 AIS patients received rtPA treatment were recruited at the stroke center from 2018 to 2019, and 103 patients were included in this study. A panel of noncoding RNAs (miRNA-23a, miRNA-193a, miRNA-128, miRNA-99a, miRNA-let-7a, miRNA-494, miRNA-424, and lncRNA H19) were measured in the circulating neutrophils of AIS patients before rtPA treatment. Endpoints included excellent outcome (modified Rankin Scale score [mRS] 0-1) or poor outcome (mRS > 1) at 3 months and symptomatic intracerebral hemorrhage (sICH) after rtPA treatment. Among the eight noncoding RNAs detected in circulating neutrophils of the 103 participants, miRNA-23a levels were associated with the stroke severity on admission and symptom progression at 24 h after rtPA treatment. A noncoding RNA score composed of miRNA-23a, miRNA-99a, and lncRNA H19 was screened to predict the functional outcome at 3 months and the incidence of sICH after rtPA treatment. In the logistic regression analysis, the noncoding RNA score ≥ -0.336 (OR = 2.862 [1.029-7.958], p = 0.044) was an independent predictor of the poor outcome at 3 months after adjustment of clinical variables, the addition of the noncoding RNA score to the clinical model improved the discrimination (IDI% = 4.68 [0.65-8.71], p = 0.020), as well as the net reclassification (NRI% = 33.04 [0.54-71.49], p = 0.016). The noncoding RNA score ≥ -0.336 (OR = 5.250 [1.096-25.135], p = 0.038) was also independently predicted the sICH, the addition of the noncoding RNA score to the clinical variables improved discrimination and reclassification as well. The noncoding RNA score was also associated with the infarct volume and symptom improvement at 7 days after rtPA treatment. In conclusion, a higher neutrophilic noncoding RNA score provides predictive value to identify AIS patients with worse outcomes after rtPA treatment. miRNA-23a, miRNA-99a, and lncRNA H19 are worth further investigation for their effects in thrombolysis after AIS.

13.
CNS Neurosci Ther ; 28(12): 2183-2194, 2022 12.
Article En | MEDLINE | ID: mdl-36052650

AIMS: Stroke has a high incidence and is a disabling condition that can lead to severe cognitive, motor, and sensory dysfunction. In this study, we employed a drug repurposing strategy to investigate the neuroprotective effect of lomitapide on focal ischemic brain injury and explore its potential mechanism of action. METHODS: Experimental cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) in adult male C57BL/6 mice and simulated by oxygen-glucose deprivation in N2a-BV2 cells in co-cultivation. RESULTS: Lomitapide significantly increased the survival rate, reduced the neuronal tissue loss, and improved the neurological function after MCAO. Furthermore, lomitapide could increase the expression of LC3-II, reduce the expression of P62 and LAMP2, promote autophagic flux, and inhibit apoptosis by increasing and inhibiting the expression of the apoptosis-associated proteins Bcl-2 and Bax, respectively. In addition, lomitapide inhibited the migration of pro-inflammatory microglia. CONCLUSION: Lomitapide is a lipid-lowering drug, and this is the first study to explore its protective effect on ischemic nerve injury in vitro and in vivo. Our results suggest that lomitapide can be repositioned as a potential therapeutic drug for the treatment of stroke.


Brain Injuries , Brain Ischemia , Reperfusion Injury , Stroke , Mice , Animals , Male , Infarction, Middle Cerebral Artery/drug therapy , Microglia , Mice, Inbred C57BL , Reperfusion Injury/metabolism , Brain Ischemia/metabolism , Autophagy , Stroke/metabolism , Apoptosis Regulatory Proteins/metabolism , Brain Injuries/metabolism
14.
Front Pharmacol ; 13: 949290, 2022.
Article En | MEDLINE | ID: mdl-35910391

Purpose: We aimed to examine the prognostic value of syndecan-1 as a marker of glycocalyx injury in patients with acute ischemic stroke (AIS) receiving rt-PA intravenous thrombolysis. Methods: The study included 108 patients with AIS treated with rt-PA intravenous thrombolysis and 47 healthy controls. Patients were divided into unfavorable and favorable prognosis groups based on modified Rankin Scale scores. Univariate and multivariate logistic regression analyses were used to determine risk factors affecting prognosis. Risk prediction models presented as nomograms. The predictive accuracy and clinical value of the new model were also evaluated. Results: Plasma levels of syndecan-1 were significantly higher in patients with AIS than in controls (p < 0.05). Univariate analysis indicated that higher levels of syndecan-1 were more frequent in patients with poor prognosis than in those with good prognosis (t = -4.273, p < 0.001). Syndecan-1 alone and in combination with other factors predicted patient outcomes. After adjusting for confounding factors, syndecan-1 levels remained associated with poor prognosis [odds ratio, 1.024; 95% confidence interval (CI), 1.010-1.038]. The risk model exhibited a good fit, with an area under the receiver operating characteristic curve of 0.935 (95% CI, 0.888-0.981). The categorical net reclassification index (NRI) and continuous NRI values were >0. The integrated discrimination improvement value was 0.111 (95% CI, 0.049-0.174, p < 0.001). Decision curve analysis indicated that the model incorporating syndecan-1 levels was more clinically valuable than the conventional model. Conclusion: Plasma syndecan-1 levels represent a potential marker of prognosis of AIS following intravenous thrombolysis. Adding syndecan-1 to the conventional model may improve risk stratification.

15.
J Clin Neurosci ; 99: 35-43, 2022 May.
Article En | MEDLINE | ID: mdl-35240473

BACKGROUND: Sufficient understanding of the systemic inflammatory response after stroke will make the therapeutic strategy targeting inflammation more feasible. Here, we aimed to identify the globally alterations of circulating cytokines in super-acute ischemic stroke (AIS). METHODS: A broad panel of 65 cytokines was measured in the plasma of twenty-eight AIS patients within 6 h after stroke onset (n = 28), cerebral hemorrhagic patients (n = 28) and healthy controls (n = 18). The diagnostic power of the candidate cytokines and their relationship with the number of lymphocytes and neutrophils were analyzed by receiver operating characteristic (ROC) and spearman rank correlation respectively. RESULTS: The expression level of plasma IL-1beta, IL-2, IL-2R, IL-5, IL-10, CD40L, HGF, MIP-3alpha and MMP-1 were obviously up-regulated, while IL-16 was down-regulated in AIS patients compared to healthy controls. Among them, IL-2R, IL-10, IL-16, MIP-3alpha, and MMP-1 were specially altered in AIS patients, while IL-1beta, IL-2, IL-5, CD40L and HGF were elevated simultaneously in AIS and hemorrhagic stroke patients. Interestingly, IL-6 and TNF-beta were found to be key facytors among the 65 cytokines to distinguish hemorrhage from ischemia. Furthermore, IL-1beta, IL-16, CD40L and HGF were obviously correlated with the number of lymphocytes, and IL-1beta and IL-16 were significantly associated with the number of neutrophils in AIS patients. These results suggest that lymphocytes and neutrophils associated inflammation may play a pivotal role in AIS. CONCLUSIONS: Importantly, except for some mutual pathological processes, AIS and hemorrhage had their own distinctive pathogenesis, and transformation of this knowledge to further research may provide novel treatment strategy for AIS.


Brain Ischemia , Ischemic Stroke , Stroke , Brain Ischemia/complications , CD40 Ligand , Cytokines , Humans , Inflammation/complications , Interleukin-10 , Interleukin-16 , Interleukin-2 , Interleukin-5 , Matrix Metalloproteinase 1 , Stroke/complications
17.
Neural Plast ; 2021: 6718184, 2021.
Article En | MEDLINE | ID: mdl-34497641

Several clinical parameters and biomarkers have been proposed as prognostic markers for stroke. However, it has not been clarified whether the risk factors affecting the prognosis of patients with recurrent and first-ever stroke are similar. In this study, we aimed to explore the relationship between soluble lectin-like oxidized low-density lipoprotein receptor 1 (sLOX-1) levels and the prediction of the functional outcome in patients with recurrent and first-ever stroke. A total of 266 patients with recurrent and first-ever stroke, who underwent follow-up for 3 months, were included in this study. Plasma samples were collected within 24 h after onset. The results showed that biomarkers for the prognosis of patients with recurrent stroke were different from that of those with first-ever stroke. sLOX-1 levels were correlated with modified Rankin Scale scores of patients with recurrent stroke alone (r = 0.3232, p = 0.001). sLOX-1 levels were also associated with an increased risk of unfavorable outcomes in patients with recurrent stroke with an adjusted odds ratio of 1.489 (95% confidence interval, 1.204-1.842, p < 0.0001). Combining the risk factors showed greater accuracy for prognosis, yielding a sensitivity of 93.2% and a specificity of 75%, with an area under the curve of 0.916, evaluated by the receiver operating characteristic curve. These findings suggest that the diagnosis and prognosis are different between patients with recurrent stroke and those with first-ever stroke, and sLOX-1 level is an independent prognostic marker in patients with recurrent stroke.


Brain Ischemia/blood , Brain Ischemia/diagnostic imaging , Ischemic Stroke/blood , Ischemic Stroke/diagnostic imaging , Scavenger Receptors, Class E/blood , Aged , Biomarkers/blood , Female , Humans , Male , Middle Aged , Prognosis , Recurrence , Risk Factors , Solubility
18.
Front Neurosci ; 15: 738576, 2021.
Article En | MEDLINE | ID: mdl-34539341

Despite the recent interest in plasma microRNA (miRNA) biomarkers in acute ischemic stroke patients, there is limited knowledge about the miRNAs directly related to stroke itself due to the multiple complications in patients, which has hindered the research progress of biomarkers and therapeutic targets of ischemic stroke. Therefore, in this study, we compared the differentially expressed miRNA profiles in the plasma of three rhesus monkeys pre- and post-cerebral ischemia. After cerebral ischemia, Rfam sequence category revealed increased ribosomic RNA (rRNA) and decreased transfer RNAs (tRNAs) in plasma. Of the 2049 miRNAs detected after cerebral ischemia, 36 were upregulated, and 76 were downregulated (fold change ≥2.0, P < 0.05). For example, mml-miR-191-5p, miR-421, miR-409-5p, and let-7g-5p were found to be significantly overexpressed, whereas mml-miR-128a-5p_R - 2, miR-431_R - 1, and let-7g-3p_1ss22CT were significantly downregulated. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that these differentially expressed miRNAs were implicated in the regulation of ubiquitin-mediated proteolysis and signaling pathways in cancer, glioma, chronic myeloid leukemia, and chemokine signaling. miRNA clustering analysis showed that mml-let-7g-5p and let-7g-3p_1ss22CT, which share three target genes [RB1-inducible coiled-coil 1 (RB1CC1), G-protein subunit γ 5 (GNG5), and chemokine (C-X-C motif) receptor 4 (CXCR4)], belong to one cluster, were altered in opposite directions following ischemia. These data suggest that circulating mml-let-7g may serve as a therapeutic target for ischemic stroke.

19.
Front Neurol ; 12: 691886, 2021.
Article En | MEDLINE | ID: mdl-34421795

Hepatocyte growth factor (HGF) is a potential prognostic factor for acute ischemic stroke (AIS). In this study, we sought to validate its earlier predictive accuracy within 24 h for first-ever AIS. Moreover, as HGF interacts with interleukins, their associations may lead to novel immunomodulatory therapeutic strategies. Patients with first-ever AIS (n = 202) within 24 h were recruited. Plasma HGF and related interleukin concentrations were measured by multiplex immunoassays. The primary and secondary outcomes were major disability (modified Rankin scale score ≥3) at 3 months after AIS and death, respectively. Elastic net regression was applied to screen variables associated with stroke outcome; binary multivariable logistic analysis was then used to explore the relationship between HGF level and stroke outcome. After multivariate adjustment, upregulated HGF levels were associated with an increased risk of the primary outcome (odds ratio, 7.606; 95% confidence interval, 3.090-18.726; p < 0.001). Adding HGF to conventional risk factors significantly improved the predictive power for unfavorable outcomes (continuous net reclassification improvement 37.13%, p < 0.001; integrated discrimination improvement 8.71%, p < 0.001). The area under the receiver operating characteristic curve value of the traditional model was 0.8896 and reached 0.9210 when HGF was introduced into the model. An elevated HGF level may also be a risk factor for mortality within 3 months poststroke. The HGF level was also positively correlated with IL-10 and IL-16 levels, and HGF before interaction with all interleukins was markedly negatively correlated with the lymphocyte/neutrophil ratio. HGF within 24 h may have prognostic potential for AIS. Our findings reinforce the link between HGF and interleukins.

20.
Cells ; 10(5)2021 05 01.
Article En | MEDLINE | ID: mdl-34062929

Understanding asymptomatic moyamoya disease (aMMD), for which treatment options are currently limited, is key to the development of therapeutic strategies that will slow down the progression of this disease, as well as facilitate the discovery of therapeutic targets for symptomatic MMD. Newly found transfer RNA-derived small RNAs (tsRNAs) perform potential regulatory functions in neovascularization, which is a well-known pathological manifestation of MMD. In this study, the neutrophilic tsRNA transcriptome in aMMD was profiled using next-generation RNA sequencing in five patients and five matched healthy subjects. A negative binominal generalized log-linear regression was used to identify differentially expressed (DE)-tsRNAs in aMMD. Gene Ontology and functional pathway analyses were used to identify biological pathways involved with the targeted genes of the DE-tsRNAs. Four tsRNAs were selected and validated using quantitative reverse transcription polymerase chain reaction. In total, 186 tsRNAs were DE between the two groups. Pathophysiological events, including immune response, angiogenesis, axon guidance, and metabolism adjustment, were enriched for the DE-tsRNAs. The expression levels of the four DE-tsRNAs were consistent with those in the neutrophilic transcriptome. These aberrantly expressed tsRNAs and their targeted pathophysiological processes provide a basis for potential future interventions for aMMD.


Moyamoya Disease/genetics , Moyamoya Disease/metabolism , RNA, Small Untranslated/genetics , Axons , Cell Proliferation , Computational Biology , Disease Progression , Female , Gene Expression Profiling , Gene Expression Regulation , Gene Library , High-Throughput Nucleotide Sequencing , Humans , Immune System , Linear Models , Male , Middle Aged , Neovascularization, Pathologic , RNA, Transfer/metabolism , Regression Analysis , Signal Transduction , Transcriptome
...