Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Dev Comp Immunol ; 157: 105182, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38636700

Galectin 8 belongs to the tandem repeat subclass of the galectin superfamily. It possesses two homologous carbohydrate recognition domains linked by a short peptide and preferentially binds to ß-galactoside-containing glycol-conjugates in a calcium-independent manner. This study identified Galectin-8-like isoform X1 (PhGal8X1) from red-lip mullet (Planiliza haematocheilus) and investigated its role in regulating fish immunity. The open reading frame of PhGal8X1 was 918bp, encoding a soluble protein of 305 amino acids. The protein had a theoretical isoelectric (pI) point of 7.7 and an estimated molecular weight of 34.078 kDa. PhGal8X1 was expressed in various tissues of the fish, with prominent levels in the brain, stomach, and intestine. PhGal8X1 expression was significantly (p < 0.05) induced in the blood and spleen upon challenge with different immune stimuli, including polyinosinic:polycytidylic acid, lipopolysaccharide, and Lactococcus garvieae. The recombinant PhGal8X1 protein demonstrated agglutination activity towards various bacterial pathogens at a minimum effective concentration of 50 µg/mL or 100 µg/mL. Subcellular localization observations revealed that PhGal8X1 was primarily localized in the cytoplasm. PhGal8X1 overexpression in fathead minnow cells significantly (p < 0.05) inhibited viral hemorrhagic septicemia virus (VHSV) replication. The expression levels of four proinflammatory cytokines and two chemokines were significantly (p < 0.05) upregulated in PhGal8X1 overexpressing cells in response to VHSV infection. Furthermore, overexpression of PhGal8X1 exhibited protective effects against oxidative stress induced by H2O2 through the upregulation of antioxidant enzymes. Taken together, these findings provide compelling evidence that PhGal8X1 plays a crucial role in enhancing innate immunity and promoting cell survival through effective regulation of antibacterial, antiviral, and antioxidant defense mechanisms in red-lip mullet.

2.
Dev Comp Immunol ; 156: 105175, 2024 Jul.
Article En | MEDLINE | ID: mdl-38574831

Peroxiredoxin-1 (Prdx1) is a thiol-specific antioxidant enzyme that detoxifies reactive oxygen species (ROS) and regulates the redox status of cells. In this study, the Prdx1 cDNA sequence was isolated from the pre-established Amphiprion clarkii (A. clarkii) (AcPrdx1) transcriptome database and characterized structurally and functionally. The AcPrdx1 coding sequence comprises 597 bp and encodes 198 amino acids with a molecular weight of 22.1 kDa and a predicted theoretical isoelectric point of 6.3. AcPrdx1 is localized and functionally available in the cytoplasm and nucleus of cells. The TXN domain of AcPrdx1 comprises two peroxiredoxin signature VCP motifs, which contain catalytic peroxidatic (Cp-C52) and resolving cysteine (CR-C173) residues. The constructed phylogenetic tree and sequence alignment revealed that AcPrdx1 is evolutionarily conserved, and its most closely related counterpart is Amphiprion ocellaris. Under normal physiological conditions, AcPrdx1 was ubiquitously detected in all tissues examined, with the most robust expression in the spleen. Furthermore, AcPrdx1 transcripts were significantly upregulated in the spleen, head kidney, and blood after immune stimulation by polyinosinic:polycytidylic acid (poly (I:C)), lipopolysaccharide (LPS), and Vibrio harveyi injection. Recombinant AcPrdx1 (rAcPrdx1) demonstrated antioxidant and DNA protective properties in a concentration-dependent manner, as evidenced by insulin disulfide reduction, peroxidase activity, and metal-catalyzed oxidation (MCO) assays, whereas cells transfected with pcDNA3.1(+)/AcPrdx1 showed significant cytoprotective function under oxidative and nitrosative stress. Overexpression of AcPrdx1 in fathead minnow (FHM) cells led to a lower viral copy number following viral hemorrhagic septicemia virus (VHSV) infection, along with upregulation of several antiviral genes. Collectively, this study provides insights into the function of AcPrdx1 in defense against oxidative stressors and its role in the immune response against pathogenic infections in A. clarkii.


Fish Proteins , Peroxiredoxins , Phylogeny , Vibrio Infections , Animals , Peroxiredoxins/metabolism , Peroxiredoxins/genetics , Peroxiredoxins/immunology , Fish Proteins/genetics , Fish Proteins/metabolism , Fish Proteins/immunology , Vibrio Infections/immunology , Poly I-C/immunology , Fish Diseases/immunology , Immunity, Innate , Vibrio/immunology , Vibrio/physiology , Cloning, Molecular , Amino Acid Sequence , Perciformes/immunology , Lipopolysaccharides/immunology , Sequence Alignment , Reactive Oxygen Species/metabolism
3.
Fish Shellfish Immunol ; 141: 109009, 2023 Oct.
Article En | MEDLINE | ID: mdl-37598735

Thioredoxin-like protein 1 (TXNL1) is a redox-active protein belonging to the thioredoxin family, which mainly controls the redox status of cells. The TXNL1 gene from Amphiprion clarkii (AcTXNL1) was obtained from a pre-established transcriptome database. The AcTXNL1 is encoded with 289 amino acids and is predominantly localized in the cytoplasm and nucleus. The TXN domain of AcTXNL1 comprises a34CGPC37 motif with redox-reactive thiol (SH-) groups. The spatial distribution pattern of AcTXNL1 mRNA was examined in different tissues, and the muscle was identified as the highest expressed tissue. AcTXNL1 mRNA levels in the blood and gills were significantly increased in response to different immunostimulants. In vitro antioxidant capacity of the recombinant AcTXNL1 protein (rACTXNL1) was evaluated using the ABTS free radical-scavenging activity assay, cupric ion reducing antioxidant capacity assay, turbidimetric disulfide reduction assay, and DNA nicking protection assay. The potent antioxidant activity of rAcTXNL1 exhibited a concentration-dependent manner in all assays. Furthermore, in the cellular environment, overexpression of AcTXNL1 increased cell viability under H2O2 stress and reduced nitric oxide (NO) production induced by lipopolysaccharides (LPS). Collectively, the experimental results revealed that AcTXNL1 is an antioxidant and immunologically important gene in A. clarkii.


Antioxidants , Hydrogen Peroxide , Animals , Antioxidants/metabolism , Amino Acid Sequence , Fish Proteins/chemistry , Recombinant Proteins/genetics , Thioredoxins/genetics , Thioredoxins/chemistry , RNA, Messenger
4.
Fish Shellfish Immunol ; 132: 108449, 2023 Jan.
Article En | MEDLINE | ID: mdl-36436687

Thioredoxins are small ubiquitous redox proteins that are involved in many biological processes. Proteins with thiol-disulfide bonds are essential regulators of cellular redox homeostasis and diagnostic markers for redox-dependent diseases. Here, we identified and characterized the thioredoxin domain-containing protein 12 (EaTXNDC12) gene in red spotted grouper (Epinephelus akaara), evaluated transcriptional responses, and investigated the activity of the recombinant protein using functional assays. EaTXNDC12 is a 19.22-kDa endoplasmic reticulum (ER)-resident protein with a 522-bp open reading frame and 173 amino acids, including a signal peptide. We identified a conserved active motif (66WCGAC70) and ER retention motif (170GDEL173) in the EaTXNDC12 amino acid sequence. Relative EaTXNDC12 mRNA expression was analyzed using 12 different tissues, with the highest expression seen in brain tissue, while skin tissue showed the lowest expression level. Furthermore, mRNA expression in response to immune challenges was analyzed in the head kidney, blood, and gill tissues. EaTXNDC12 was significantly modulated in response to bacterial endotoxin lipopolysaccharide (LPS), nervous necrosis virus (NNV), and polyinosinic:polycytidylic acid (poly(I:C)) challenges in all of the tested tissues. Recombinant EaTXNDC12 (rEaTXNDC12) displayed antioxidant ability in an insulin reductase assay, and a capacity for free radical inhibition in a 2,2-diphenyl-1-picryl-hydrazyl-hydrate assay. In addition, a DNA nicking assay revealed that purified rEaTXNDC12 exhibited concentration-dependent DNA protection activity, while results from 2-hydroxyethyl disulfide and L-dehydroascorbic assays indicated that rEaTXNDC12a possesses reducing ability. Furthermore, fathead minnow (FHM) cells transfected with EaTXNDC12-pcDNA demonstrated significantly upregulated cell survival against H2O2-induced apoptosis. Collectively, the results of this study strengthen our knowledge of EaTXNDC12 with respect to cellular redox hemostasis and immune regulation in Epinephelus akaara.


Bass , Fish Diseases , Animals , Base Sequence , Cloning, Molecular , Hydrogen Peroxide/metabolism , Immunity , RNA, Messenger/metabolism , Thioredoxins/genetics , Thioredoxins/chemistry , Disulfides , Oxidoreductases/metabolism , DNA , Fish Proteins/chemistry , Gene Expression Regulation , Phylogeny
...