Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochemistry ; 55(49): 6743-6750, 2016 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-27951658

RESUMEN

Indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) are heme-containing enzymes that catalyze the O2-dependent oxidation of l-tryptophan (l-Trp) in biological systems. Although many decades have passed since their discovery, the mechanism of tryptophan oxidation has not been established. It has been widely assumed that IDO and TDO react using the same mechanism, although there is no evidence that they do. For IDO, a Compound II (ferryl) species accumulates in the steady state and is implicated in the mechanism; in TDO, no such species has ever been observed. In this paper, we examine the kinetics of tryptophan oxidation in TDO. We find no evidence for the accumulation of Compound II during TDO catalysis. Instead, a ternary [Fe(II)-O2, l-Trp] complex is detected under steady state conditions. The absence of a Compound II species in the steady state in TDO is not due to an intrinsic inability of the TDO enzyme to form ferryl heme, because Compound II can be formed directly through a different route in which ferrous heme is reacted with peroxide. We interpret the data to mean that the rate-limiting step in the IDO and TDO mechanisms is not the same.


Asunto(s)
Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Triptófano Oxigenasa/metabolismo , Cinética , Espectrometría de Masas , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
2.
J Biol Chem ; 290(52): 30924-30, 2015 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-26511316

RESUMEN

The kynurenine pathway is the major route of L-tryptophan (L-Trp) catabolism in biology, leading ultimately to the formation of NAD(+). The initial and rate-limiting step of the kynurenine pathway involves oxidation of L-Trp to N-formylkynurenine. This is an O2-dependent process and catalyzed by indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase. More than 60 years after these dioxygenase enzymes were first isolated (Kotake, Y., and Masayama, I. (1936) Z. Physiol. Chem. 243, 237-244), the mechanism of the reaction is not established. We examined the mechanism of substrate oxidation for a series of substituted tryptophan analogues by indoleamine 2,3-dioxygenase. We observed formation of a transient intermediate, assigned as a Compound II (ferryl) species, during oxidation of L-Trp, 1-methyl-L-Trp, and a number of other substrate analogues. The data are consistent with a common reaction mechanism for indoleamine 2,3-dioxygenase-catalyzed oxidation of tryptophan and other tryptophan analogues.


Asunto(s)
Indolamina-Pirrol 2,3,-Dioxigenasa/química , Quinurenina/química , Oxígeno/química , Triptófano/química , Catálisis , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Quinurenina/metabolismo , Oxidación-Reducción , Oxígeno/metabolismo , Especificidad por Sustrato , Triptófano/metabolismo
3.
FEBS J ; 279(24): 4501-9, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23083473

RESUMEN

Indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase catalyze the O(2) -dependent oxidation of l-tryptophan to N-formylkynurenine. Both are heme-containing enzymes, with a proximal histidine ligand, as found in the globins and peroxidases. From the structural information available so far, the distal heme pockets of these enzymes can contain a histidine residue (in tryptophan 2,3-dioxygenases), an arginine residue and numerous hydrophobic residues that line the pocket. We have examined the functional role of each of these residues in both human indoleamine 2,3-dioxygenase and human tryptophan 2,3-dioxygenase. We found that the distal histidine does not play an essential catalytic role, although substrate binding can be affected by removing the distal arginine and reducing the hydrophobic nature of the binding pocket. We collate the information obtained in the present study with that reported in the available literature to draw comparisons across the family and to provide a more coherent picture of how the heme pocket is optimized for tryptophan binding.


Asunto(s)
Hemoproteínas/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Triptófano Oxigenasa/metabolismo , Triptófano/metabolismo , Dominio Catalítico , Oxidación-Reducción , Unión Proteica , Especificidad por Sustrato
4.
Curr Opin Chem Biol ; 16(1-2): 60-6, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22356841

RESUMEN

Heme iron is often used in biology for activation of oxygen. The mechanisms of oxygen activation by heme-containing monooxygenases (the cytochrome P450s) are well known, and involve formation of a Compound I species, but information on the heme-containing dioxygenase enzymes involved in tryptophan oxidation lags far behind. In this review, we gather together information emerging recently from structural, mechanistic, spectroscopic, and computational approaches on the heme dioxygenase enzymes involved in tryptophan oxidation. We explore the subtleties that differentiate various heme enzymes from each other, and use this to piece together a developing picture for oxygen activation in this particular class of heme-containing dioxygenases.


Asunto(s)
Dioxigenasas/metabolismo , Hemo/metabolismo , Biocatálisis , Dioxigenasas/química , Dioxigenasas/clasificación , Hemo/química , Humanos , Oxidación-Reducción , Especificidad por Sustrato , Triptófano/química , Triptófano/metabolismo
5.
J Am Chem Soc ; 133(40): 16251-7, 2011 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-21892828

RESUMEN

Heme dioxygenases catalyze the oxidation of L-tryptophan to N-formylkynurenine (NFK), the first and rate-limiting step in tryptophan catabolism. Although recent progress has been made on early stages in the mechanism, there is currently no experimental data on the mechanism of product (NFK) formation. In this work, we have used mass spectrometry to examine product formation in a number of dioxygenases. In addition to NFK formation (m/z = 237), the data identify a species (m/z = 221) that is consistent with insertion of a single atom of oxygen into the substrate during O(2)-driven turnover. The fragmentation pattern for this m/z = 221 species is consistent with a cyclic amino acetal structure; independent chemical synthesis of the 3a-hydroxypyrroloindole-2-carboxylic acid compound is in agreement with this assignment. Labeling experiments with (18)O(2) confirm the origin of the oxygen atom as arising from O(2)-dependent turnover. These data suggest that the dioxygenases use a ring-opening mechanism during NFK formation, rather than Criegee or dioxetane mechanisms as previously proposed.


Asunto(s)
Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Quinurenina/análogos & derivados , Triptófano Oxigenasa/metabolismo , Hemo/metabolismo , Humanos , Quinurenina/metabolismo , Espectrometría de Masas , Oxígeno/metabolismo , Xanthomonas campestris/enzimología
6.
Biochemistry ; 50(14): 2717-24, 2011 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-21361337

RESUMEN

As members of the family of heme-dependent enzymes, the heme dioxygenases are differentiated by virtue of their ability to catalyze the oxidation of l-tryptophan to N-formylkynurenine, the first and rate-limiting step in tryptophan catabolism. In the past several years, there have been a number of important developments that have meant that established proposals for the reaction mechanism in the heme dioxygenases have required reassessment. This focused review presents a summary of these recent advances, written from a structural and mechanistic perspective. It attempts to present answers to some of the long-standing questions, to highlight as yet unresolved issues, and to explore the similarities and differences of other well-known catalytic heme enzymes such as the cytochromes P450, NO synthase, and peroxidases.


Asunto(s)
Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Quinurenina/análogos & derivados , Triptófano Oxigenasa/metabolismo , Triptófano/metabolismo , Animales , Biocatálisis , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/química , Quinurenina/química , Quinurenina/metabolismo , Modelos Moleculares , Estructura Molecular , Estructura Terciaria de Proteína , Triptófano/química , Triptófano Oxigenasa/química
7.
Biochemistry ; 48(22): 4738-46, 2009 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-19309109

RESUMEN

The heme peroxidase and heme oxygenase enzymes share a common heme prosthetic group but catalyze fundamentally different reactions, the first being H(2)O(2)-dependent oxidation of substrate using an oxidized Compound I intermediate, and the second O(2)-dependent degradation of heme. It has been proposed that these enzymes utilize a common reaction intermediate, a ferric hydroperoxide species, that sits at a crossroads in the mechanism and beyond which there are two mutually exclusive mechanistic pathways. Here, we present evidence to support this proposal in a heme peroxidase. Hence, we describe kinetic data for a variant of ascorbate peroxidase (W41A) which reacts slowly with tert-butyl hydroperoxide and does not form the usual peroxidase Compound I intermediate; instead, structural data show that a product is formed in which the heme has been cleaved at the alpha-meso position, analogous to the heme oxygenase mechanism. We interpret this to mean that the Compound I (peroxidase) pathway is shut down, so that instead the reaction intermediate diverts through the alternative (heme oxygenase) route. A mechanism for formation of the product is proposed and discussed in the light of what is known about the heme oxygenase reaction mechanism.


Asunto(s)
Hemo Oxigenasa (Desciclizante)/química , Hemo Oxigenasa (Desciclizante)/metabolismo , Peroxidasas/química , Peroxidasas/metabolismo , Ascorbato Peroxidasas , Ácido Aspártico/genética , Cristalización , Cristalografía por Rayos X , Variación Genética , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Peroxidasas/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glycine max/enzimología , Glycine max/genética , Triptófano/genética , terc-Butilhidroperóxido/química , terc-Butilhidroperóxido/metabolismo
8.
Chem Commun (Camb) ; (45): 4791-3, 2007 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-18004443

RESUMEN

The first reported intramolecular pinacol coupling of cyclopropyl ketones has been achieved, demonstrating that cyclisation competes favourably with ring-opening of the cyclopropyl ketyl radical.

9.
Org Biomol Chem ; 5(21): 3544-53, 2007 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-17943217

RESUMEN

Three diastereoisomers of 3-amino-4-hydroxy-2-(hydroxymethyl)pyrrolidine have been synthesised by a divergent route starting from trans-4-hydroxy-L-proline. Regio- and stereoselective introduction of the 3-amino and 4-hydroxyl functional groups was achieved using either a tethered aminohydroxylation reaction or by employing intra- and intermolecular epoxide-opening strategies. Preliminary biological data indicate that two of these novel amino pyrrolidines are moderate inhibitors of beta-galactosidase.


Asunto(s)
Inhibidores Enzimáticos/síntesis química , Glicósido Hidrolasas/antagonistas & inhibidores , Pirrolidinas/síntesis química , Inhibidores Enzimáticos/química , Glicósido Hidrolasas/química , Hidroxilación , Estructura Molecular , Pirrolidinas/química , Pirrolidinas/farmacología , Estereoisomerismo , alfa-Galactosidasa/antagonistas & inhibidores , alfa-Galactosidasa/química , beta-Galactosidasa/antagonistas & inhibidores , beta-Galactosidasa/química
10.
Bioorg Med Chem Lett ; 16(21): 5493-7, 2006 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-16934977

RESUMEN

Binding affinities for a range of epibatidine isomers and analogues at the alpha4beta2 and alpha3beta4 nAChR subtypes are reported; compounds having similar N-N distances to epibatidine show similar, high potencies.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/química , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Agonistas Nicotínicos/química , Agonistas Nicotínicos/farmacología , Piridinas/química , Piridinas/farmacología , Línea Celular , Humanos , Isomerismo , Relación Estructura-Actividad
11.
Org Lett ; 7(13): 2759-62, 2005 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-15957940

RESUMEN

[reaction: see text] Coupling of N-Boc-7-bromo-2-azabicyclo[2.2.1]heptane with aryl and pyridyl boronic acids incorporates aryl and heterocyclic substituents at the 7-position and leads to a preference for syn over anti stereoisomers. Incorporation of a chloropyridyl group followed by N-deprotection gives syn-isoepibatidine. Facial selectivity in attack on 7-keto-2-azanorbornanes depends heavily on the N-protecting group leading to the first syn-7-hydroxy-2-azabicyclo[2.2.1]heptane derivative.


Asunto(s)
Compuestos Aza/síntesis química , Compuestos Bicíclicos Heterocíclicos con Puentes/síntesis química , Agonistas Nicotínicos/síntesis química , Norbornanos/síntesis química , Piridinas/síntesis química , Compuestos Aza/química , Azetidinas/síntesis química , Azetidinas/química , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Cristalografía por Rayos X , Conformación Molecular , Estructura Molecular , Agonistas Nicotínicos/química , Norbornanos/química , Piridinas/química , Estereoisomerismo
13.
J Org Chem ; 62(7): 2173-2185, 1997 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-11671526

RESUMEN

The formation of the structurally novel, mono-substituted cycloheptane ring in omega-cycloheptyl fatty acids in Alicyclobacillus cycloheptanicus (formerly Bacillus cycloheptanicus) has been examined. Feeding experiments with (13)C- and (2)H-labeled intermediates demonstrated that cycloheptanecarboxylic acid (3), probably as its CoA thioester, is the starter unit for omega-cycloheptyl fatty acid biosynthesis. Analysis of the resultant labeling pattern from a feeding experiment with [U-(13)C(6)]glucose suggested a shikimate pathway origin of 3 via aromatic amino acids. [1,2-(13)C(2)]Phenylacetic acid (6) was efficiently metabolized into the 3-derived moiety in a manner reminiscent of the seven-membered ring Pseudomonas metabolite thiotropocin. The fates of the aromatic and benzylic hydrogens of 6 were determined; these dictated various boundary conditions for the biosynthetic pathway from 6 to 3. Taken together with the results from feeding experiments with postulated cycloheptenylcarboxylate biosynthetic intermediates, the data lead us to propose a pathway which involves an oxidative ring-expansion of 6 to a hydroxynorcaradiene intermediate followed by a series of double bond reductions and dehydrations to the saturated 3.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...