Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38328149

RESUMEN

Distinguishing between nectar and non-nectar odors presents a challenge for animals due to shared compounds in complex mixtures, where changing ratios often signify differences in reward. Changes in nectar production throughout the day and potentially many times within a forager's lifetime add to the complexity. The honeybee olfactory system, containing less than a 1000 of principal neurons in the early olfactory relay, the antennal lobe (AL), must learn to associate diverse volatile blends with rewards. We used a computational network model and live imaging of the honeybee's AL to explore the neural mechanisms and functions of the AL plasticity. Our findings revealed that when trained with a set of rewarded and unrewarded odors, the AL inhibitory network suppresses shared chemical compounds while enhancing responses to distinct compounds. This results in improved pattern separation and a more concise and efficient neural code. Our Ca2+ imaging data support our model's predictions. Furthermore, we applied these contrast enhancement principles to a Graph Convolutional Network (GCN) and found that similar mechanisms could enhance the performance of artificial neural networks. Our model provides insights into how plasticity at the inhibitory network level reshapes coding for efficient learning of complex odors.

2.
Elife ; 122023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36719272

RESUMEN

Odorants binding to olfactory receptor neurons (ORNs) trigger bursts of action potentials, providing the brain with its only experience of the olfactory environment. Our recordings made in vivo from locust ORNs showed that odor-elicited firing patterns comprise four distinct response motifs, each defined by a reliable temporal profile. Different odorants could elicit different response motifs from a given ORN, a property we term motif switching. Further, each motif undergoes its own form of sensory adaptation when activated by repeated plume-like odor pulses. A computational model constrained by our recordings revealed that organizing responses into multiple motifs provides substantial benefits for classifying odors and processing complex odor plumes: each motif contributes uniquely to encode the plume's composition and structure. Multiple motifs and motif switching further improve odor classification by expanding coding dimensionality. Our model demonstrated that these response features could provide benefits for olfactory navigation, including determining the distance to an odor source.


Asunto(s)
Neuronas Receptoras Olfatorias , Neuronas Receptoras Olfatorias/fisiología , Olfato/fisiología , Odorantes , Potenciales de Acción/fisiología , Encéfalo
3.
PLoS One ; 17(3): e0265009, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35353837

RESUMEN

Animals are constantly bombarded with stimuli, which presents a fundamental problem of sorting among pervasive uninformative stimuli and novel, possibly meaningful stimuli. We evaluated novelty detection behaviorally in honey bees as they position their antennae differentially in an air stream carrying familiar or novel odors. We then characterized neuronal responses to familiar and novel odors in the first synaptic integration center in the brain-the antennal lobes. We found that the neurons that exhibited stronger initial responses to the odor that was to be familiarized are the same units that later distinguish familiar and novel odors, independently of chemical identities. These units, including both tentative projection neurons and local neurons, showed a decreased response to the familiar odor but an increased response to the novel odor. Our results suggest that the antennal lobe may represent familiarity or novelty to an odor stimulus in addition to its chemical identity code. Therefore, the mechanisms for novelty detection may be present in early sensory processing, either as a result of local synaptic interaction or via feedback from higher brain centers.


Asunto(s)
Odorantes , Olfato , Animales , Abejas , Encéfalo , Neuronas/fisiología , Olfato/fisiología
4.
PLoS Comput Biol ; 14(5): e1006131, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29795571

RESUMEN

Many tumors are characterized by genetic instability, producing an assortment of genetic variants of tumor cells called subclones. These tumors and their surrounding environments form complex multi-cellular ecosystems, where subclones compete for resources and cooperate to perform multiple tasks, including cancer invasion. Our recent empirical studies revealed existence of such distinct phenotypes of cancer cells, leaders and followers, in lung cancer. These two cellular subclones exchange a complex array of extracellular signals demonstrating a symbiotic relationship at the cellular level. Here, we develop a computational model of the microenvironment of the lung cancer ecosystem to explore how the interactions between subclones can advance or inhibit invasion. We found that, due to the complexity of the ecosystem, invasion may have very different dynamics characterized by the different levels of aggressiveness. By altering the signaling environment, we could alter the ecological relationship between the cell types and the overall ecosystem development. Competition between leader and follower cell populations (defined by the limited amount of resources), positive feedback within the leader cell population (controlled by the focal adhesion kinase and fibronectin signaling), and impact of the follower cells to the leaders (represented by yet undetermined proliferation signal) all had major effects on the outcome of the collective dynamics. Specifically, our analysis revealed a class of tumors (defined by the strengths of fibronectin signaling and competition) that are particularly sensitive to manipulations of the signaling environment. These tumors can undergo irreversible changes to the tumor ecosystem that outlast the manipulations of feedbacks and have a profound impact on invasive potential. Our study predicts a complex division of labor between cancer cell subclones and suggests new treatment strategies targeting signaling within the tumor ecosystem.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Modelos Biológicos , Microambiente Tumoral , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Biología Computacional , Ecosistema , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Microscopía Fluorescente , Transducción de Señal , Microambiente Tumoral/genética , Microambiente Tumoral/fisiología
5.
Am Nat ; 191(5): 668-675, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29693444

RESUMEN

Global climate change has made what were seemingly extraordinary environmental conditions, such as prolonged droughts, commonplace. One consequence of extreme environmental change is concomitant changes in resource abundance. How will such extreme resource changes impact biodiversity? We developed a trait-based consumer-resource model to examine how resource abundance affects the potential for adaptive evolution and coexistence among competitors. We found that moderate changes in resource abundance have little effect on trait evolution. However, when resource scarcities were sufficiently extreme, a critical transition-a tipping point-occurred, which caused consumer traits to diverge and restructured the community in a way that outlasted the scarcity. Therefore, even though traits can evolve in response to minor resource fluctuations, large environmental shifts may be necessary for producing long-lasting impacts on community structure. These results may also help to illuminate patterns of stasis frequently observed in nature, despite the considerable evidence demonstrating rapid evolutionary change.


Asunto(s)
Adaptación Biológica , Evolución Biológica , Cambio Climático , Ecosistema , Modelos Genéticos
6.
J Neurophysiol ; 120(1): 171-185, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29589811

RESUMEN

Adaptation of neural responses is ubiquitous in sensory systems and can potentially facilitate many important computational functions. Here we examined this issue with a well-constrained computational model of the early olfactory circuits. In the insect olfactory system, the responses of olfactory receptor neurons (ORNs) on the antennae adapt over time. We found that strong adaptation of sensory input is important for rapidly detecting a fresher stimulus encountered in the presence of other background cues and for faithfully representing its identity. However, when the overlapping odorants were chemically similar, we found that adaptation could alter the representation of these odorants to emphasize only distinguishing features. This work demonstrates novel roles for peripheral neurons during olfactory processing in complex environments. NEW & NOTEWORTHY Olfactory systems face the problem of distinguishing salient information from a complex olfactory environment. The neural representations of specific odor sources should be consistent regardless of the background. How are olfactory representations robust to varying environmental interference? We show that in locusts the extraction of salient information begins in the periphery. Olfactory receptor neurons adapt in response to odorants. Adaptation can provide a computational mechanism allowing novel odorant components to be highlighted during complex stimuli.


Asunto(s)
Adaptación Fisiológica , Discriminación en Psicología , Percepción Olfatoria , Animales , Saltamontes , Neuronas Receptoras Olfatorias/fisiología , Olfato
7.
Artículo en Inglés | MEDLINE | ID: mdl-29744132

RESUMEN

In many cancers, such as Chronic Myelogenous Leukemia (CML), pancreatic, and colorectal cancer, long delays exist between the initiation of the disease and the onset of debilitating symptoms. The early stages of these diseases present manageable symptoms and, in the case of CML, highly effective treatment options. Progression to the more aggressive stages of the diseases limits effective treatment and significantly exacerbates patient prognosis. The mechanisms causing delay and disease progression are largely unknown. The later stages of these diseases are characterized by excessive build up of primitive cell types, indicating a disruption in the normal cell differentiation process that is commonly regulated through feedback from differentiated types. In this study, we propose a mechanism where mutated primitive cells produce a feedback interference signal that desensitizes them to a normal homeostatic feedback. Using a mathematical model, we show that this mechanism can account for the long delay period between occurrence of genetic changes and symptomatic onset characterized by fast growth of cancerous cell population. Finally, we explore novel concepts for potential treatment of chronic cancers.

8.
BMC Syst Biol ; 4: 119, 2010 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-20735856

RESUMEN

BACKGROUND: Interconnected cell signaling pathways are able to efficiently and accurately transmit a multitude of different signals, despite an inherent potential for undesirable levels of cross-talk. To ensure that an appropriate response is produced, biological systems have evolved network-level mechanisms that insulate pathways from crosstalk and prevent 'leaking' or 'spillover' between pathways. Many signaling pathways have been shown to respond in an ultrasensitive (switch-like) fashion to graded input, and this behavior may influence specificity. The relationship of ultrasensitivity to signaling specificity has not been extensively explored. RESULTS: We studied the behavior of simple mathematical models of signaling networks composed of two interconnected pathways that share an intermediate component, asking if the two pathways in the network could exhibit both output specificity (preferentially activate their own output) and input fidelity (preferentially respond to their own input). Previous results with weakly-activated pathways indicated that neither mutual specificity nor mutual fidelity were obtainable in the absence of an insulating mechanism, such as cross-pathway inhibition, combinatorial signaling or scaffolding/compartmentalization. Here we found that mutual specificity is obtainable for hyperbolic or ultrasensitive pathways, even in the absence of an insulating mechanism. However, mutual fidelity is impossible at steady-state, even if pathways are hyperbolic or ultrasensitive. Nevertheless, ultrasensitivity does provide advantages in attaining specificity and fidelity to networks that contain an insulating mechanism. For networks featuring cross-pathway inhibition or combinatorial signaling, ultrasensitive activation can increase specificity in a limited way, and can only be utilized by one of the two pathways. In contrast, for networks featuring scaffolding/compartmentalization, ultrasensitive activation of both pathways can dramatically improve network specificity. CONCLUSIONS: There are constraints to obtaining performance objectives associated with signaling specificity; such constraints may have influenced the evolution of signal transduction networks. Notably, input fidelity (preferential response to an authentic input) is a more difficult objective to achieve than output specificity (preferential targeting to an authentic output). Indeed, mutual fidelity is impossible in the absence of an insulating mechanism, even if pathways are ultrasensitive. Ultrasensitivity does, however, significantly enhance the performance of several insulating mechanisms. In particular, the ultrasensitive activation of both pathways can provide substantial improvement to networks containing scaffolding/compartmentalization.


Asunto(s)
Modelos Biológicos , Transducción de Señal
9.
PLoS Comput Biol ; 4(4): e1000062, 2008 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-18421373

RESUMEN

Neural circuits exploit numerous strategies for encoding information. Although the functional significance of individual coding mechanisms has been investigated, ways in which multiple mechanisms interact and integrate are not well understood. The locust olfactory system, in which dense, transiently synchronized spike trains across ensembles of antenna lobe (AL) neurons are transformed into a sparse representation in the mushroom body (MB; a region associated with memory), provides a well-studied preparation for investigating the interaction of multiple coding mechanisms. Recordings made in vivo from the insect MB demonstrated highly specific responses to odors in Kenyon cells (KCs). Typically, only a few KCs from the recorded population of neurons responded reliably when a specific odor was presented. Different odors induced responses in different KCs. Here, we explored with a biologically plausible model the possibility that a form of plasticity may control and tune synaptic weights of inputs to the mushroom body to ensure the specificity of KCs' responses to familiar or meaningful odors. We found that plasticity at the synapses between the AL and the MB efficiently regulated the delicate tuning necessary to selectively filter the intense AL oscillatory output and condense it to a sparse representation in the MB. Activity-dependent plasticity drove the observed specificity, reliability, and expected persistence of odor representations, suggesting a role for plasticity in information processing and making a testable prediction about synaptic plasticity at AL-MB synapses.


Asunto(s)
Aprendizaje/fisiología , Modelos Neurológicos , Red Nerviosa/fisiología , Plasticidad Neuronal/fisiología , Neuronas Receptoras Olfatorias/fisiología , Olfato/fisiología , Transmisión Sináptica/fisiología , Potenciales de Acción/fisiología , Adaptación Fisiológica/fisiología , Animales , Relojes Biológicos/fisiología , Simulación por Computador , Saltamontes/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...