Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
RSC Adv ; 14(21): 14672-14679, 2024 May 02.
Article En | MEDLINE | ID: mdl-38708121

ZnO nanomaterials have been extensively used as photocatalysts for the removal of pollutants in aqueous environments. This study explores the enhanced photocatalytic performance of porous ZnO coral-like nanoplates synthesized via a one-pot wet-chemical method and subsequent annealing treatment. Characterization through scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), powder X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), Raman spectroscopy, photoluminescence (PL) spectroscopy, and Brunauer-Emmett-Teller (BET) measurements confirmed the nanoplates' porous structure, single-crystal structure, 100 nm thickness, and 80 nm pore size. These unique structural characteristics of the ZnO coral-like nanoplates enabled effective photodegradation of the organic dye rhodamine B (RhB) under visible light irradiation. Under simulated sunlight, the ZnO photocatalyst exhibited exceptional performance, achieving a 97.3% removal rate of RhB after 210 minutes of irradiation. The prepared ZnO photocatalyst also showed remarkable photostability and regeneration capability for RhB photodegradation with a decreased efficiency of less than 15% after eight testing cycles. The potential mechanism of the ZnO photocatalyst toward RhB degradation was also studied and is discussed in detail.

2.
Plant J ; 109(4): 816-830, 2022 02.
Article En | MEDLINE | ID: mdl-34797009

Various environmental stresses can induce production of reactive oxygen species (ROS) to turn on signaling for proper responses to those stresses. Plasma membrane (PM)-localized respiratory burst oxidase homologs (RBOHs), in particular RBOHD, produce ROS via the post-translational activation upon abiotic and biotic stresses. Although the mechanisms of RBOHD activation upon biotic stress have been elucidated in detail, it remains elusive how salinity stress activates RBOHD. Here, we present evidence that trafficking of PM-localized RBOHD to endosomes and then its recycling back to the PM is critical for ROS accumulation upon salinity stress. ateca4 plants that were defective in recycling of proteins from endosomes to the PM and clc2-1 and chc2-1 plants that were defective in endocytosis showed a defect in salinity stress-induced ROS production. In addition, ateca4 plants showed a defect in transient accumulation of GFP:RBOHD to the PM at the early stage of salinity stress. By contrast, ateca4 plants showed no defect in the increase in the ROS level and accumulation of RBOHD to the PM upon flg22 treatment as wild-type plants. Based on these observations, we propose that factors involved in the trafficking machinery such as AtECA4 and clathrin are important players in salt stress-induced, but not flg22-induced, ROS accumulation.


Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Calcium-Transporting ATPases/metabolism , Clathrin/metabolism , Endocytosis/physiology , NADPH Oxidases/metabolism , Reactive Oxygen Species/metabolism , Salt Stress/physiology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Calcium-Transporting ATPases/genetics , Cell Membrane/metabolism , Endosomes/metabolism , Gene Expression Regulation, Plant , Immunity , NADPH Oxidases/genetics , Stress, Physiological
3.
J Nanosci Nanotechnol ; 21(4): 2626-2632, 2021 04 01.
Article En | MEDLINE | ID: mdl-33500085

In the current work, we report the on-chip fabrication of a low-temperature H2S sensor based on p-type Co3O4 nanofibers (NFs) using the electrospinning method. The FESEM images show the typical spider-net like morphologies of synthesized Co3O4 NFs with an average diameter of 90 nm formed on the comb-like electrodes. The EDX data indicate the presence of Co and O elements in the NFs. The XRD analysis results confirm the formation of single-phase cubic spinel nanocrystalline structures (Fd3 m) for the synthesized Co3O4 NFs. The Raman results are in agreement with the XRD data through the presence of five typical vibration modes of the nanocrystalline Co3O4. The gas sensing properties of the fabricated Co3O4 NF sensors are tested to 1 ppm H2S within a temperature range of 150 °C to 450 °C. The results indicate a highest sensor response to 1 ppm H2S with the gas response of aproximately 2.1 times and the gas response/recovery times of 75 s/258 s at a low temperature of 250 °C. The fabricated sensor also demonstrates good selectivity and a low detection limit of 18 ppb. The overall results suggest a simple and effective fabrication process for the p-type Co3O4 NF sensor for practical applications in detecting H2S gas at low temperature.

4.
Plant Physiol ; 174(3): 1576-1594, 2017 Jul.
Article En | MEDLINE | ID: mdl-28487479

Prenylated Rab acceptor1 (PRA1) functions in the recruitment of prenylated Rab proteins to their cognate organelles. Arabidopsis (Arabidopsis thaliana) contains a large number of proteins belonging to the AtPRA1 family. However, their physiological roles remain largely unknown. Here, we investigated the physiological role of AtPRA1.F4, a member of the AtPRA1 family. A T-DNA insertion knockdown mutant of AtPRA1.F4, atpra1.f4, was smaller in stature than parent plants and possessed shorter roots, whereas transgenic plants overexpressing HA:AtPRA1.F4 showed enhanced development of secondary roots and root hairs. However, both overexpression and knockdown plants exhibited increased sensitivity to high-salt stress, lower vacuolar Na+/K+-ATPase and plasma membrane ATPase activities, lower and higher pH in the vacuole and apoplast, respectively, and highly vesiculated Golgi apparatus. HA:AtPRA1.F4 localized to the Golgi apparatus and assembled into high-molecular-weight complexes. atpra1.f4 plants displayed a defect in vacuolar trafficking, which was complemented by low but not high levels of HA:AtPRA1.F4 Overexpression of HA:AtPRA1.F4 also inhibited protein trafficking at the Golgi apparatus, albeit differentially depending on the final destination or type of protein: trafficking of vacuolar proteins, plasma membrane proteins, and trans-Golgi network (TGN)-localized SYP61 was strongly inhibited; trafficking of TGN-localized SYP51 was slightly inhibited; and trafficking of secretory proteins and TGN-localized SYP41 was negligibly or not significantly inhibited. Based on these results, we propose that Golgi-localized AtPRA1.F4 is involved in the exit of many but not all types of post-Golgi proteins from the Golgi apparatus. Additionally, an appropriate level of AtPRA1.F4 is crucial for its function at the Golgi apparatus.


Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Golgi Apparatus/metabolism , Protein Prenylation , Vesicular Transport Proteins/metabolism , Arabidopsis/drug effects , Arabidopsis/growth & development , Arabidopsis/ultrastructure , Cell Membrane/enzymology , Cell Membrane/ultrastructure , Gene Knockdown Techniques , Golgi Apparatus/drug effects , Golgi Apparatus/ultrastructure , Green Fluorescent Proteins/metabolism , Hydrogen-Ion Concentration , Membrane Proteins/metabolism , Mutation/genetics , Plant Development/drug effects , Plant Development/genetics , Plant Roots/drug effects , Plant Roots/growth & development , Plants, Genetically Modified , Protein Prenylation/drug effects , SNARE Proteins/metabolism , Seeds/drug effects , Seeds/growth & development , Sodium Chloride/pharmacology , Sodium-Potassium-Exchanging ATPase/metabolism , Stress, Physiological/drug effects , Stress, Physiological/genetics , Vacuoles/drug effects , Vacuoles/metabolism
5.
J Nanosci Nanotechnol ; 16(5): 4860-3, 2016 May.
Article En | MEDLINE | ID: mdl-27483835

We directly deposited amorphous InGaZnO (a-IGZO) nonvolatile memory (NVM) devices with oxynitride-oxide-dioxide (OOO) stack structures on plastic substrate by a DC pulsed magnetron sputtering and inductively coupled plasma chemical vapor deposition (ICPCVD) system, using a low-temperature of 150 degrees C. The fabricated bottom gate a-IGZO NVM devices have a wide memory window with a low operating voltage during programming and erasing, due to an effective control of the gate dielectrics. In addition, after ten years, the memory device retains a memory window of over 73%, with a programming duration of only 1 ms. Moreover, the a-IGZO films show high optical transmittance of over 85%, and good uniformity with a root mean square (RMS) roughness of 0.26 nm. This film is a promising candidate to achieve flexible displays and transparency on plastic substrates because of the possibility of low-temperature deposition, and the high transparent properties of a-IGZO films. These results demonstrate that the a-IGZO NVM devices obtained at low-temperature have a suitable programming and erasing efficiency for data storage under low-voltage conditions, in combination with excellent charge retention characteristics, and thus show great potential application in flexible memory displays.

...