Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 102021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33685582

RESUMEN

During photosynthesis, electron transport is necessary for carbon assimilation and must be regulated to minimize free radical damage. There is a longstanding controversy over the role of a critical enzyme in this process (ferredoxin:NADP(H) oxidoreductase, or FNR), and in particular its location within chloroplasts. Here we use immunogold labelling to prove that FNR previously assigned as soluble is in fact membrane associated. We combined this technique with a genetic approach in the model plant Arabidopsis to show that the distribution of this enzyme between different membrane regions depends on its interaction with specific tether proteins. We further demonstrate a correlation between the interaction of FNR with different proteins and the activity of alternative photosynthetic electron transport pathways. This supports a role for FNR location in regulating photosynthetic electron flow during the transition from dark to light.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Electrones , Ferredoxina-NADP Reductasa/genética , Fotosíntesis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Cloroplastos/metabolismo , Ferredoxina-NADP Reductasa/metabolismo , Fotoperiodo
2.
Metab Eng ; 55: 33-43, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31091467

RESUMEN

Plants and cyanobacteria are promising heterologous hosts for metabolic engineering, and particularly suited for expression of cytochrome P450 (P450s), enzymes that catalyse key steps in biosynthetic pathways leading to valuable natural products such as alkaloids, terpenoids and phenylpropanoids. P450s are often difficult to express and require a membrane-bound NADPH-dependent reductase, complicating their use in metabolic engineering and bio-production. We previously demonstrated targeting of heterologous P450s to thylakoid membranes both in N. benthamiana chloroplasts and cyanobacteria, and functional substitution of their native reductases with the photosynthetic apparatus via the endogenous soluble electron carrier ferredoxin. However, because ferredoxin acts as a sorting hub for photosynthetic reducing power, there is fierce competition for reducing equivalents, which limits photosynthesis-driven P450 output. This study compares the ability of four electron carriers to increase photosynthesis-driven P450 activity. These carriers, three plant ferredoxins and a flavodoxin-like engineered protein derived from cytochrome P450 reductase, show only modest differences in their electron transfer to our model P450, CYP79A1 in vitro. However, only the flavodoxin-like carrier supplies appreciable reducing power in the presence of competition for reduced ferredoxin, because it possesses a redox potential that renders delivery of reducing equivalents to endogenous processes inefficient. We further investigate the efficacy of these electron carrier proteins in vivo by expressing them transiently in N. benthamiana fused to CYP79A1. All but one of the fusion enzymes show improved sequestration of photosynthetic reducing power. Fusion with the flavodoxin-like carrier offers the greatest improvement in this comparison - nearly 25-fold on a per protein basis. Thus, this study demonstrates that synthetic electron transfer pathways with optimal redox potentials can alleviate the problem of endogenous competition for reduced ferredoxin and sets out a new metabolic engineering strategy useful for producing valuable natural products.


Asunto(s)
Cloroplastos , Sistema Enzimático del Citocromo P-450 , Ingeniería Metabólica , Nicotiana , Fotosíntesis/genética , Proteínas de Plantas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cloroplastos/enzimología , Cloroplastos/genética , Cianobacterias/genética , Cianobacterias/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Transporte de Electrón/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana/enzimología , Nicotiana/genética
3.
Photochem Photobiol ; 84(6): 1302-9, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18673322

RESUMEN

Ferredoxin (Fd) is the soluble protein that accepts electrons from photosystem I (PSI) and makes them available to stromal enzymes in higher plant chloroplasts. In linear electron flow, Fd mainly donates electrons to Fd:NADPH reductase (FNR) which generates NADPH for use in the Calvin cycle, but Fd may also return electrons to the thylakoid plastoquinone pool, forming a cyclic electron flow. Many higher plants contain two different photosynthetic Fd proteins, but there are no conserved sequence differences that allow their division into evolutionary groups. In the model C3 photosynthesizing dicot, Arabidopsis thaliana, there are two such photosynthetic Fds, and we have exploited RNA interference (RNAi) techniques to specifically decrease transcript abundance of different Fds in this plant. Surprisingly, the perturbation of photosynthesis, as measured by cholorophyll fluorescence, in RNAi lines of the two different photosynthetic Fds shows opposite trends. Linear electron flow is retarded in lines with lower Fd2 (the most abundant Fd species) levels and under certain circumstances enhanced in lines with lower Fd1 (the minor isoprotein) levels. These data are evidences for at least partially differentiated roles of Fd1 and Fd2 in photosynthetic electron transfer, possibly in the partition of electrons into linear and cyclic electron flow.


Asunto(s)
Arabidopsis/metabolismo , Ferredoxinas/biosíntesis , Fotosíntesis , Interferencia de ARN , Secuencia de Aminoácidos , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Ferredoxinas/química , Ferredoxinas/genética , Cinética , Datos de Secuencia Molecular , Filogenia , Hojas de la Planta/química , Hojas de la Planta/clasificación , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
4.
Plant Cell Environ ; 31(7): 1017-28, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18410491

RESUMEN

The mechanism by which plants regulate channelling of photosynthetically derived electrons into different areas of chloroplast metabolism remains obscure. Possible fates of such electrons include use in carbon assimilation, nitrogen assimilation and redox signalling pathways, or return to the plastoquinone pool through cyclic electron flow. In higher plants, these electrons are made accessible to stromal enzymes, or for cyclic electron flow, as reduced ferredoxin (Fd), or NADPH. We investigated how knockout of an Arabidopsis (Arabidopsis thaliana) ferredoxin:NADPH reductase (FNR) isoprotein and the loss of strong thylakoid binding by the remaining FNR in this mutant affected the channelling of photosynthetic electrons into NADPH- and Fd-dependent metabolism. Chlorophyll fluorescence data show that these mutants have complex variation in cyclic electron flow, dependent on light conditions. Measurements of electron transport in isolated thylakoid and chloroplast systems demonstrated perturbed channelling to NADPH-dependent carbon and Fd-dependent nitrogen assimilating metabolism, with greater competition in the mutant. Moreover, mutants accumulate greater biomass than the wild type under low nitrate growth conditions, indicating that such altered chloroplast electron channelling has profound physiological effects. Taken together, our results demonstrate the integral role played by FNR isoform and location in the partitioning of photosynthetic reducing power.


Asunto(s)
Ferredoxina-NADP Reductasa/metabolismo , Mutación , Nitritos/metabolismo , Fotosíntesis , Arabidopsis/enzimología , Biomasa , Clorofila/metabolismo , Transporte de Electrón , Ferredoxina-NADP Reductasa/genética , Oxidación-Reducción , ARN Mensajero/genética , Transducción de Señal , Espectrometría de Fluorescencia
5.
J Biol Chem ; 280(3): 2275-81, 2005 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-15513928

RESUMEN

We have determined the crystal structure, at 1.2-A resolution, of Equisetum arvense ferredoxin isoform II (FdII), which lacks residues equivalent to Arg(39) and Glu(28) highly conserved among other ferredoxins (Fds). In other Fds these residues form an intramolecular salt bridge crucial for stabilization of the [2Fe-2S] cluster, which is disrupted upon complex formation with Fd-NADP(+) oxidoreductase (FNR) to form two intermolecular salt bridges. The overall structure of FdII resembles the known backbone structures of E. arvense isoform I (FdI) and other plant-type Fds. Dramatically, in the FdII structure a unique, alternative salt bridge is formed between Arg(22) and Glu(58). This results in a different relative orientation of the alpha-helix formed by Leu(23)-Glu(29) and eliminates the possibility of forming three of the five intermolecular salt bridges identified on formation of a complex between maize FdI and maize FNR. Mutation of FdII, informed by structural differences with FdI, showed that the alternative salt bridge and the absence of an otherwise conserved Tyr residue are important for the alternative stabilization of the FdII [2Fe-2S] cluster. We also investigated FdI and FdII electron transfer to FNR on chloroplast thylakoid membranes. The K(m) and V(max) values of FdII are similar to those of FdI, contrary to previous measurements of the reverse reaction, from FNR to Fd. The affinity between reduced FdI and oxidized FNR is much greater than that between oxidized FdI and reduced FNR, whereas this is not the case with FdII. The pH dependence of electron transfer by FdI, FdII, and an FdII mutant with FdI features was measured and further indicated that the binding mode to FNR differs between FdI and FdII. Based on this evidence, we hypothesize that binding modes with other Fd-dependent reductases may also vary between FdI and FdII. The structural differences between FdI and FdII therefore result in functional differences that may influence partitioning of electrons into different redox metabolic pathways.


Asunto(s)
Equisetum/metabolismo , Ferredoxina-NADP Reductasa/metabolismo , Ferredoxinas/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Transporte de Electrón , Ferredoxinas/química , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Mutación , Conformación Proteica , Homología de Secuencia de Aminoácido
6.
Plant Physiol ; 134(1): 255-64, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14684843

RESUMEN

In higher plant plastids, ferredoxin (Fd) is the unique soluble electron carrier protein located in the stroma. Consequently, a wide variety of essential metabolic and signaling processes depend upon reduction by Fd. The currently available plant genomes of Arabidopsis and rice (Oryza sativa) contain several genes encoding putative Fds, although little is known about the proteins themselves. To establish whether this variety represents redundancy or specialized function, we have recombinantly expressed and purified the four conventional [2Fe-2S] Fd proteins encoded in the Arabidopsis genome and analyzed their physical and functional properties. Two proteins are leaf type Fds, having relatively low redox potentials and supporting a higher photosynthetic activity. One protein is a root type Fd, being more efficiently reduced under nonphotosynthetic conditions and supporting a higher activity of sulfite reduction. A further Fd has a remarkably positive redox potential and so, although redox active, is limited in redox partners to which it can donate electrons. Immunological analysis indicates that all four proteins are expressed in mature leaves. This holistic view demonstrates how varied and essential soluble electron transfer functions in higher plants are fulfilled through a diversity of Fd proteins.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Ferredoxinas/genética , Ferredoxinas/metabolismo , Secuencia de Aminoácidos , Proteínas de Arabidopsis/química , Secuencia de Bases , ADN de Plantas/genética , Transporte de Electrón , Ferredoxinas/química , Genes de Plantas , Genoma de Planta , Datos de Secuencia Molecular , NADP/metabolismo , Oxidación-Reducción , Fotosíntesis , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Zea mays/genética , Zea mays/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...