Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 48
2.
Int J Mol Sci ; 24(4)2023 Feb 09.
Article En | MEDLINE | ID: mdl-36834900

The abscisic acid (ABA)/LANC-like protein 1/2 (LANCL1/2) hormone/receptor system regulates glucose uptake and oxidation, mitochondrial respiration, and proton gradient dissipation in myocytes. Oral ABA increases glucose uptake and the transcription of adipocyte browning-related genes in rodent brown adipose tissue (BAT). The aim of this study was to investigate the role of the ABA/LANCL system in human white and brown adipocyte thermogenesis. Immortalized human white and brown preadipocytes, virally infected to overexpress or silence LANCL1/2, were differentiated in vitro with or without ABA, and transcriptional and metabolic targets critical for thermogenesis were explored. The overexpression of LANCL1/2 increases, and their combined silencing conversely reduces mitochondrial number, basal, and maximal respiration rates; proton gradient dissipation; and the transcription of uncoupling genes and of receptors for thyroid and adrenergic hormones, both in brown and in white adipocytes. The transcriptional enhancement of receptors for browning hormones also occurs in BAT from ABA-treated mice, lacking LANCL2 but overexpressing LANCL1. The signaling pathway downstream of the ABA/LANCL system includes AMPK, PGC-1α, Sirt1, and the transcription factor ERRα. The ABA/LANCL system controls human brown and "beige" adipocyte thermogenesis, acting upstream of a key signaling pathway regulating energy metabolism, mitochondrial function, and thermogenesis.


Abscisic Acid , Protons , Animals , Humans , Mice , Abscisic Acid/metabolism , Adipocytes, Brown/metabolism , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Energy Metabolism/genetics , Glucose/metabolism , Hormones/metabolism , Receptors, G-Protein-Coupled/metabolism , Thermogenesis/genetics , Uncoupling Protein 1/metabolism
3.
FEBS J ; 290(10): 2673-2691, 2023 05.
Article En | MEDLINE | ID: mdl-36595342

Exploring mechanisms responsible for brown adipose tissue's (BAT) high metabolic activity is crucial to exploit its energy-dissipating ability for therapeutic purposes. Basigin (Bsg), a multifunctional highly glycosylated transmembrane protein, was recently proposed as one of the 98 critical markers allowing to distinguish 'white' and 'brown' adipocytes, yet its function in thermogenic brown adipocytes is unknown. Here, we report that Bsg is negatively associated with obesity in mice. By contrast, Bsg expression increased in the mature adipocyte fraction of BAT upon cold acclimation. Additionally, Bsg levels were highly induced during brown adipocyte maturation in vitro and were further increased upon ß-adrenergic stimulation in a HIF-1α-dependent manner. siRNA-mediated Bsg gene silencing in cultured brown adipocytes did not impact adipogenesis nor mitochondrial function. However, a significant decrease in mitochondrial respiration, lipolysis and Ucp1 transcription was observed in adipocytes lacking Bsg, when activated by norepinephrine. Furthermore, using gas chromatography/mass spectrometry-time-of-flight analysis to assess the composition of cellular metabolites, we demonstrate that brown adipocytes lacking Bsg have lower levels of intracellular lactate and acetoacetate. Bsg was additionally required to regulate intracellular AcAc and tricarboxylic acid cycle intermediate levels in NE-stimulated adipocytes. Our study highlights the critical role of Bsg in active brown adipocytes, possibly by controlling cellular metabolism.


Adipocytes, Brown , Adipose Tissue, Brown , Mice , Animals , Adipocytes, Brown/metabolism , Adipose Tissue, Brown/metabolism , Basigin/metabolism , Lipolysis , Obesity/metabolism , Thermogenesis/genetics , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism
4.
Nat Commun ; 13(1): 3956, 2022 07 08.
Article En | MEDLINE | ID: mdl-35803907

ß-Adrenergic signaling is a core regulator of brown adipocyte function stimulating both lipolysis and transcription of thermogenic genes, thereby expanding the capacity for oxidative metabolism. We have used pharmacological inhibitors and a direct activator of lipolysis to acutely modulate the activity of lipases, thereby enabling us to uncover lipolysis-dependent signaling pathways downstream of ß-adrenergic signaling in cultured brown adipocytes. Here we show that induction of lipolysis leads to acute induction of several gene programs and is required for transcriptional regulation by ß-adrenergic signals. Using machine-learning algorithms to infer causal transcription factors, we show that PPARs are key mediators of lipolysis-induced activation of genes involved in lipid metabolism and thermogenesis. Importantly, however, lipolysis also activates the unfolded protein response and regulates the core circadian transcriptional machinery independently of PPARs. Our results demonstrate that lipolysis generates important metabolic signals that exert profound pleiotropic effects on transcription and function of cultured brown adipocytes.


Adipocytes, Brown , Lipolysis , Adipocytes, Brown/metabolism , Adipose Tissue, Brown/metabolism , Adrenergic Agents/pharmacology , Lipolysis/genetics , Peroxisome Proliferator-Activated Receptors/metabolism , Thermogenesis/physiology
5.
iScience ; 25(1): 103680, 2022 Jan 21.
Article En | MEDLINE | ID: mdl-35036870

lncRAP2 is a conserved cytoplasmic lncRNA enriched in adipose tissue and required for adipogenesis. Using purification and in vivo interactome analyses, we show that lncRAP2 forms complexes with proteins that stabilize mRNAs and modulate translation, among them Igf2bp2. Surveying transcriptome-wide Igf2bp2 client mRNAs in white adipocytes reveals selective binding to mRNAs encoding adipogenic regulators and energy expenditure effectors, including adiponectin. These same target proteins are downregulated when either Igf2bp2 or lncRAP2 is downregulated, hindering adipocyte lipolysis. Proteomics and ribosome profiling show this occurs predominantly through mRNA accumulation, as lncRAP2-Igf2bp2 complex binding does not impact translation efficiency. Phenome-wide association studies reveal specific associations of genetic variants within both lncRAP2 and Igf2bp2 with body mass and type 2 diabetes, and both lncRAP2 and Igf2bp2 are suppressed in adipose depots of obese and diabetic individuals. Thus, the lncRAP2-Igf2bp2 complex potentiates adipose development and energy expenditure and is associated with susceptibility to obesity-linked diabetes.

6.
Adv Sci (Weinh) ; 8(16): e2100106, 2021 08.
Article En | MEDLINE | ID: mdl-34165908

Obesity and type 2 diabetes are strongly associated with adipose tissue dysfunction and impaired adipogenesis. Understanding the molecular underpinnings that control adipogenesis is thus of fundamental importance for the development of novel therapeutics against metabolic disorders. However, translational approaches are hampered as current models do not accurately recapitulate adipogenesis. Here, a scaffold-free versatile 3D adipocyte culture platform with chemically defined conditions is presented in which primary human preadipocytes accurately recapitulate adipogenesis. Following differentiation, multi-omics profiling and functional tests demonstrate that 3D adipocyte cultures feature mature molecular and cellular phenotypes similar to freshly isolated mature adipocytes. Spheroids exhibit physiologically relevant gene expression signatures with 4704 differentially expressed genes compared to conventional 2D cultures (false discovery rate < 0.05), including the concerted expression of factors shaping the adipogenic niche. Furthermore, lipid profiles of >1000 lipid species closely resemble patterns of the corresponding isogenic mature adipocytes in vivo (R2 = 0.97). Integration of multi-omics signatures with analyses of the activity profiles of 503 transcription factors using global promoter motif inference reveals a complex signaling network, involving YAP, Hedgehog, and TGFß signaling, that links the organotypic microenvironment in 3D culture to the activation and reinforcement of PPARγ and CEBP activity resulting in improved adipogenesis.


Adipogenesis/physiology , Adipose Tissue/pathology , Cell Culture Techniques/methods , Cells, Cultured , Humans , Signal Transduction/physiology
7.
Eur J Endocrinol ; 184(5): 687-697, 2021 May.
Article En | MEDLINE | ID: mdl-33683213

OBJECTIVE: Activation of brown adipose tissue is a promising strategy to treat and prevent obesity and obesity-related disorders. Activation of uncoupling protein 1 (UCP1) leads to uncoupled respiration and dissipation of stored energy as heat. Induction of UCP1-rich adipocytes in white adipose tissue, a process known as 'browning', serves as an alternative strategy to increase whole body uncoupling capacity. Here, we aim to assess the association between parathyroid hormone (PTH) receptor expression and UCP1 expression in human adipose tissues and to study PTH effects on human white and brown adipocyte lipolysis and UCP1 expression. DESIGN: A descriptive study of human neck adipose tissue biopsies substantiated by an interventional study on human neck-derived adipose tissue cell models. METHODS: Thermogenic markers and PTH receptor gene expression are assessed in human neck adipose tissue biopsies and are related to individual health records. PTH-initiated lipolysis and thermogenic gene induction are assessed in cultured human white and brown adipocyte cell models. PTH receptor involvement is investigated by PTH receptor silencing. RESULTS: PTH receptor gene expression correlates with UCP1 gene expression in the deep-neck adipose tissue in humans. In cell models, PTH receptor stimulation increases lipolysis and stimulates gene transcription of multiple thermogenic markers. Silencing of the PTH receptor attenuates the effects of PTH indicating a direct PTH effect via this receptor. CONCLUSION: PTH 1 receptor stimulation by PTH may play a role in human adipose tissue metabolism by affecting lipolysis and thermogenic capacity.


Adipocytes/drug effects , Adipose Tissue, Brown/metabolism , Adipose Tissue/drug effects , Lipolysis/drug effects , Parathyroid Hormone/pharmacology , Receptor, Parathyroid Hormone, Type 1/metabolism , Thermogenesis/drug effects , Adipocytes/metabolism , Adipose Tissue/metabolism , Adult , Aged , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Uncoupling Protein 1/metabolism , Young Adult
8.
Biochem J ; 477(13): 2477-2487, 2020 07 17.
Article En | MEDLINE | ID: mdl-32648929

Exposure to cold alters glucose and lipid metabolism of white and brown adipose tissue via activation of ß-adrenergic receptor (ADRB). Fibroblast growth factor 21 (FGF21) has been shown to be locally released from adipose tissue upon activation of ADRBs and FGF21 increases glucose uptake in adipocytes. Therefore, FGF21 may play an autocrine role in inducing glucose uptake after ß-adrenergic stimulation. To determine the putative autocrine role of FGF21, we stimulated three different types of adipocytes in vitro with Isoprenaline (Iso), an ADRB agonist, in the presence or absence of the FGF receptor (FGFR) inhibitor PD 173074. The three cell lines represent white (3T3-L1), beige (ME3) and brown (WT-1) adipocyte phenotypes, respectively. All three cells systems expressed ß-klotho (KLB) and FGFR1 after differentiation and treatment with recombinant FGF21 increased glucose uptake in 3T3-L1 and WT-1 adipocytes, while no significant effect was observed in ME3. Oppositely, all three cell lines responded to Iso treatment and an increase in glucose uptake and lipolysis were observed. Interestingly, in response to the Iso treatment only the WT-1 adipocytes showed an increase in FGF21 in the medium. This was consistent with the observation that PD 173074 decreased Iso-induced glucose uptake in the WT-1 adipocytes. This suggests that FGF21 plays an autocrine role and increases glucose uptake after ß-adrenergic stimulation of cultured brown WT-1 adipocytes.


Adipocytes/metabolism , Fibroblast Growth Factors/metabolism , 3T3-L1 Cells , Adipocytes/drug effects , Adrenergic beta-Agonists/pharmacology , Animals , Cell Line , Glucose/metabolism , Isoproterenol/pharmacology , Mice , Pyrimidines/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Adrenergic, beta/metabolism , Receptors, Fibroblast Growth Factor/antagonists & inhibitors , Uncoupling Protein 1/genetics
9.
Acta Physiol (Oxf) ; 228(2): e13360, 2020 02.
Article En | MEDLINE | ID: mdl-31400255

AIM: Extracellular ATP signalling is involved in many physiological and pathophysiological processes in several tissues, including adipose tissue. Adipocytes have crucial functions in lipid and glucose metabolism and they express purinergic receptors. However, the sources of extracellular ATP in adipose tissue are not well characterized. In the present study, we investigated the mechanism and regulation of ATP release in white adipocytes, and evaluated the role of extracellular ATP as potential autocrine and paracrine signal. METHODS: Online ATP release was monitored in C3H10T1/2 cells and freshly isolated murine adipocytes. The ATP release mechanism and its regulation were tested in cells exposed to adrenergic agonists, insulin, glucose load and pharmacological inhibitors. Cell metabolism was monitored using Seahorse respirometry and expression analysis of pannexin-1 was performed on pre- and mature adipocytes. The ATP signalling was evaluated in live cell imaging (Ca2+ , pore formation), glycerol release and its effect on macrophages was tested in co-culture and migration assays. RESULTS: Here, we show that upon adrenergic stimulation white murine adipocytes release ATP through the pannexin-1 pore that is regulated by a cAMP-PKA-dependent pathway. The ATP release correlates with increased cell metabolism and is sensitive to glucose. Extracellular ATP induces Ca2+ signalling and lipolysis in adipocytes and promotes macrophage migration. Importantly, ATP release is markedly inhibited by insulin, which operates via the activation of phosphodiesterase 3. CONCLUSIONS: Our findings reveal an insulin-pannexin-1-purinergic signalling crosstalk in adipose tissue and we propose that deregulation of this signalling may contribute to adipose tissue inflammation and type 2 diabetes.


Adenosine Triphosphate/metabolism , Adipocytes/physiology , Connexins/metabolism , Glucose/pharmacology , Insulin/pharmacology , Macrophages/physiology , Nerve Tissue Proteins/metabolism , Adipocytes/cytology , Adipocytes/drug effects , Adipocytes/metabolism , Animals , Cell Communication/drug effects , Cell Movement/drug effects , Cells, Cultured , Hypoglycemic Agents/pharmacology , Lipolysis/drug effects , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Signal Transduction , Sweetening Agents/pharmacology
10.
FEBS Lett ; 594(7): 1218-1225, 2020 04.
Article En | MEDLINE | ID: mdl-31823361

Utilizing the thermogenic capacity of brown adipose tissue is a potential anti-obesity strategy; therefore, the mechanisms controlling expression of thermogenesis-related genes are of interest. Pyruvate kinase (PK) catalyzes the last step of glycolysis and exists as four isoenzymes: PK, liver, PK, red blood cell, PK, muscle (PKM1 and PKM2). PKM2 has both glycolytic and nuclear functions. Here, we report that PKM2 is enriched in brown adipose compared with white adipose tissue. Specific knockdown of PKM2 in mature brown adipocytes demonstrates that silencing of PKM2 does not lead to a decrease in PK activity, but causes a robust upregulation of thermogenic uncoupling protein 1 (Ucp1) and fibroblast growth factor 21 (Fgf21) gene expression. This increase is not mediated by any of the known mechanisms for PKM2-regulated gene expression, thus implying the existence of a novel mechanism for PKM2-dependent effects on gene expression.


Adipocytes, Brown/enzymology , Adipocytes, Brown/metabolism , Down-Regulation , Pyruvate Kinase/metabolism , Thermogenesis/genetics , Animals , Cell Line , Female , Fibroblast Growth Factors/genetics , Mice , Pyruvate Kinase/deficiency , Pyruvate Kinase/genetics , Uncoupling Protein 1/genetics
11.
J Clin Endocrinol Metab ; 105(4)2020 04 01.
Article En | MEDLINE | ID: mdl-31867674

PURPOSE: Brown adipose tissue (BAT) activation in humans has gained interest as a potential target for treatment of obesity and insulin resistance. In rodents, BAT is primarily induced through beta-3 adrenergic receptor (ADRB3) stimulation, whereas the primary beta adrenergic receptors (ADRBs) involved in human BAT activation are debated. We evaluated the importance of different ADRB subtypes for uncoupling protein 1 (UCP1) induction in human brown adipocytes. METHODS: A human BAT cell model (TERT-hBA) was investigated for subtype-specific ADRB agonists and receptor knockdown on UCP1 mRNA levels and lipolysis (glycerol release). In addition, fresh human BAT biopsies and TERT-hBA were evaluated for expression of ADRB1, ADRB2, and ADRB3 using RT-qPCR. RESULTS: The predominant ADRB subtype in TERT-hBA adipocytes and BAT biopsies was ADRB1. In TERT-hBA, UCP1 mRNA expression was stimulated 11.0-fold by dibutyryl cAMP (dbcAMP), 8.0-fold to 8.4-fold by isoproterenol (ISO; a pan-ADRB agonist), and 6.1-fold to 12.7-fold by dobutamine (ADRB1 agonist), whereas neither procaterol (ADRB2 agonist), CL314.432, or Mirabegron (ADRB3 agonists) affected UCP1. Similarly, dbcAMP, ISO, and dobutamine stimulated glycerol release, whereas lipolysis was unaffected by ADRB2 and ADRB3 agonists. Selective knockdown of ADRB1 significantly attenuated ISO-induced UCP1 expression. CONCLUSION: The adrenergic stimulation of UCP1 and lipolysis may mainly be mediated through ADRB1. Moreover, ADRB1 is the predominant ADRB in both TERT-hBA and human BAT biopsies. Thus, UCP1 expression in human BAT may, unlike in rodents, primarily be regulated by ADRB1. These findings may have implications for ADRB agonists as future therapeutic compounds for human BAT activation.


Adipocytes, Brown/metabolism , Gene Expression Regulation , Receptors, Adrenergic, beta-1/metabolism , Receptors, Adrenergic, beta-3/metabolism , Adipocytes, Brown/cytology , Adult , Aged , Aged, 80 and over , Cells, Cultured , Cross-Sectional Studies , Female , Follow-Up Studies , Humans , Lipolysis , Male , Middle Aged , Receptors, Adrenergic, beta-1/genetics , Receptors, Adrenergic, beta-3/genetics , Young Adult
12.
Sci Rep ; 9(1): 8979, 2019 06 20.
Article En | MEDLINE | ID: mdl-31222118

Cyclooxygenases are known as important regulators of metabolism and immune processes via conversion of C20 fatty acids into various regulatory lipid mediators, and cyclooxygenase activity has been implicated in browning of white adipose tissues. We generated transgenic (TG) C57BL/6 mice expressing the Ptgs2 gene encoding cyclooxygenase-2 (COX-2) in mature adipocytes. TG mice fed a high-fat diet displayed marginally lower weight gain with less hepatic steatosis and a slight improvement in insulin sensitivity, but no difference in glucose tolerance. Compared to littermate wildtype mice, TG mice selectively reduced inguinal white adipose tissue (iWAT) mass and fat cell size, whereas the epididymal (eWAT) fat depot remained unchanged. The changes in iWAT were accompanied by increased levels of specific COX-derived lipid mediators and increased mRNA levels of interleukin-33, interleukin-4 and arginase-1, but not increased expression of uncoupling protein 1 or increased energy expenditure. Epididymal WAT (eWAT) in TG mice exhibited few changes except from increased infiltration with eosinophils. Our findings suggest a role for COX-2-derived lipid mediators from adipocytes in mediating type 2 immunity cues in subcutaneous WAT associated with decreased hepatic steatosis, but with no accompanying induction of browning and increased energy expenditure.


Adipocytes/metabolism , Adipose Tissue, White/metabolism , Adiposity/genetics , Cyclooxygenase 2/genetics , Fatty Liver/genetics , Fatty Liver/metabolism , Gene Expression , Adipocytes/cytology , Animals , Body Weight , Cell Differentiation , Cyclooxygenase 2/metabolism , Diet, High-Fat , Disease Models, Animal , Eosinophils/immunology , Eosinophils/metabolism , Fatty Liver/pathology , Glucose/metabolism , Insulin/metabolism , Mice , Mice, Transgenic
13.
Bone ; 123: 103-114, 2019 06.
Article En | MEDLINE | ID: mdl-30914274

INTRODUCTION: The FSH receptor (FSHR) has been found to be expressed in human bone cells and bone marrow-adipocytes, and highly-debated mouse studies have suggested extra-gonadal effects of gonadotropins on glucose, adipocyte and bone homeostasis. These putative effects could be direct or indirectly mediated by endocrine factors released from bone-cells or adipocytes. Here, we investigated whether gonadotropins are linked with glucose- and lipid-metabolism in hypergonadotropic men. METHODS: Single centre, cross-sectional study of 307 men with idiopathic infertility and 28 men with Klinefelter syndrome (KS). OUTCOME: associations between serum LH and FSH with soluble-RANKL (sRANKL), osteoprotegerin (OPG), osteocalcin, fasting glucose and insulin, sex steroids, and body composition. Expression of FSHR was studied in human-derived adipocyte-cell-models (hMADS, TERT-hWA) and FSH stimulation of RANKL expression and secretion in hMADS in vitro. RESULTS: Serum FSH was not directly linked with glucose- and lipid-metabolism. However, FSH was inversely associated with sRANKL in both infertile men and KS men (p = .023 and p = .012). Infertile men with elevated FSH (>11 U/L) had significantly lower sRANKL (p = .015). sRANKL was positively associated with fat percentage, fasting insulin, and glucose (all p < .05). Men with prediabetes had higher sRANKL (p = .021), but lower testosterone (p < .0001) and Inhibin B (p = .005). The FSHR was expressed in the investigated human derived adipocytes, and 3-6 h treatment with FSH markedly increased RANKL release (p < .05). CONCLUSION: KS and infertile men with prediabetes have low Inhibin B, and testosterone but elevated RANKL compared with non-prediabetic men despite comparable levels of serum gonadotropins. Serum FSH and sRANKL was inversely associated in both infertile and KS men, but the increased release of RANKL from FSH treated adipocytes suggest a direct effect of FSH on RANKL production in some tissues. Further studies are required to clarify whether FSH targets RANKL in the skeleton. ClinicalTrial_ID:NCT01304927.


Adipocytes/metabolism , Follicle Stimulating Hormone/metabolism , Infertility, Male/metabolism , Klinefelter Syndrome/metabolism , RANK Ligand/metabolism , Adipocytes/drug effects , Adult , Biomarkers/blood , Biomarkers/metabolism , Cohort Studies , Cross-Sectional Studies , Follicle Stimulating Hormone/pharmacology , Humans , Infertility, Male/complications , Infertility, Male/diagnosis , Klinefelter Syndrome/complications , Klinefelter Syndrome/diagnosis , Male
14.
Diabetes Obes Metab ; 20(9): 2264-2273, 2018 09.
Article En | MEDLINE | ID: mdl-29752759

AIMS: To test the hypothesis that brown adipose tissue (BAT) is a metformin target tissue by investigating in vivo uptake of [11 C]-metformin tracer in mice and studying in vitro effects of metformin on cultured human brown adipocytes. MATERIALS AND METHODS: Tissue-specific uptake of metformin was assessed in mice by PET/CT imaging after injection of [11 C]-metformin. Human brown adipose tissue was obtained from elective neck surgery and metformin transporter expression levels in human and murine BAT were determined by qPCR. Oxygen consumption in metformin-treated human brown adipocyte cell models was assessed by Seahorse XF technology. RESULTS: Injected [11 C]-metformin showed avid uptake in the murine interscapular BAT depot. Metformin exposure in BAT was similar to hepatic exposure. Non-specific inhibition of the organic cation transporter (OCT) protein by cimetidine administration eliminated BAT exposure to metformin, demonstrating OCT-mediated uptake. Gene expression profiles of OCTs in BAT revealed ample OCT3 expression in both human and mouse BAT. Incubation of a human brown adipocyte cell models with metformin reduced cellular oxygen consumption in a dose-dependent manner. CONCLUSION: These results support BAT as a putative metformin target.


Adipose Tissue, Brown/drug effects , Hypoglycemic Agents/pharmacokinetics , Metformin/pharmacokinetics , Oxygen Consumption/drug effects , Animals , Cimetidine/administration & dosage , Dose-Response Relationship, Drug , Humans , Mice , Octamer Transcription Factor-3/metabolism , Organic Cation Transport Proteins/metabolism , Positron Emission Tomography Computed Tomography , Transcriptome
15.
Sci Rep ; 8(1): 3469, 2018 02 22.
Article En | MEDLINE | ID: mdl-29472592

Brown adipose tissue is a promising therapeutic target in metabolic disorders due to its ability to dissipate energy and improve systemic insulin sensitivity and glucose homeostasis. ß-Adrenergic stimulation of brown adipocytes leads to an increase in oxygen consumption and induction of a thermogenic gene program that includes uncoupling protein 1 (Ucp1) and fibroblast growth factor 21 (Fgf21). In kinase inhibitor screens, we have identified glycogen synthase kinase 3 (GSK3) as a negative regulator of basal and ß-adrenergically stimulated Fgf21 expression in cultured brown adipocytes. In addition, inhibition of GSK3 also caused increased Ucp1 expression and oxygen consumption. ß-Adrenergic stimulation triggered an inhibitory phosphorylation of GSK3 in a protein kinase A (PKA)-dependent manner. Mechanistically, inhibition of GSK3 activated the mitogen activated protein kinase (MAPK) kinase 3/6-p38 MAPK-activating transcription factor 2 signaling module. In summary, our data describe GSK3 as a novel negative regulator of ß-adrenergic signaling in brown adipocytes.


Adipocytes, Brown/metabolism , Fibroblast Growth Factors/genetics , Glycogen Synthase Kinase 3/genetics , Thermogenesis/genetics , Uncoupling Protein 1/genetics , Animals , Cyclic AMP-Dependent Protein Kinases/genetics , Energy Metabolism/genetics , Gene Expression Regulation/drug effects , Glucose/metabolism , Insulin Resistance/genetics , MAP Kinase Signaling System/genetics , Mice , Oxygen Consumption/genetics , Primary Cell Culture , Protein Kinase Inhibitors/administration & dosage , Receptors, Adrenergic, beta/genetics , Signal Transduction/drug effects
16.
Am J Physiol Endocrinol Metab ; 314(3): E214-E223, 2018 03 01.
Article En | MEDLINE | ID: mdl-29118013

During thermogenic activation, brown adipocytes take up large amounts of glucose. In addition, cold stimulation leads to an upregulation of glycolytic enzymes. Here we have investigated the importance of glycolysis for brown adipocyte glucose consumption and thermogenesis. Using siRNA-mediated knockdown in mature adipocytes, we explored the effect of glucose transporters and glycolytic enzymes on brown adipocyte functions such as consumption of glucose and oxygen. Basal oxygen consumption in brown adipocytes was equally dependent on glucose and fatty acid oxidation, whereas isoproterenol (ISO)-stimulated respiration was fueled mainly by fatty acids, with a significant contribution from glucose oxidation. Knockdown of glucose transporters in brown adipocytes not only impaired ISO-stimulated glycolytic flux but also oxygen consumption. Diminishing glycolytic flux by knockdown of the first and final enzyme of glycolysis, i.e., hexokinase 2 (HK2) and pyruvate kinase M (PKM), respectively, decreased glucose uptake and ISO-stimulated oxygen consumption. HK2 knockdown had a more severe effect, which, in contrast to PKM knockdown, could not be rescued by supplementation with pyruvate. Hence, brown adipocytes rely on glucose consumption and glycolytic flux to achieve maximum thermogenic output, with glycolysis likely supporting thermogenesis not only by pyruvate formation but also by supplying intermediates for efferent metabolic pathways.


Adipocytes, Brown/drug effects , Adipocytes, Brown/metabolism , Adrenergic beta-Agonists/pharmacology , Glucose/metabolism , Glycolysis/drug effects , Oxygen Consumption/drug effects , Adipose Tissue, Brown/drug effects , Adipose Tissue, Brown/metabolism , Animals , Cells, Cultured , Down-Regulation/drug effects , Down-Regulation/physiology , Fatty Acids/metabolism , Isoproterenol/pharmacology , Lipid Metabolism/drug effects , Male , Mice , Oxidation-Reduction/drug effects , Thermogenesis/drug effects
17.
Nat Commun ; 8(1): 2115, 2017 12 13.
Article En | MEDLINE | ID: mdl-29235464

Brown adipose tissue (BAT) metabolism influences glucose homeostasis and metabolic health in mice and humans. Sympathetic stimulation of ß-adrenergic receptors in response to cold induces proliferation, differentiation, and UCP1 expression in pre-adipocytes and mature brown adipocytes. Here we show that spleen tyrosine kinase (SYK) is upregulated during brown adipocyte differentiation and activated by ß-adrenergic stimulation. Deletion or inhibition of SYK, a kinase known for its essential roles in the immune system, blocks brown and white pre-adipocyte proliferation and differentiation in vitro, and results in diminished expression of Ucp1 and other genes regulating brown adipocyte function in response to ß-adrenergic stimulation. Adipocyte-specific SYK deletion in mice reduces BAT mass and BAT that developed consisted of SYK-expressing brown adipocytes that had escaped homozygous Syk deletion. SYK inhibition in vivo represses ß-agonist-induced thermogenesis and oxygen consumption. These results establish SYK as an essential mediator of brown fat formation and function.


Adipocytes, Brown/enzymology , Adipose Tissue, Brown/metabolism , Cell Differentiation , Syk Kinase/metabolism , Adipocytes, Brown/cytology , Animals , Cell Proliferation , Cells, Cultured , Humans , Male , Mice, Inbred C57BL , Mice, Knockout , Syk Kinase/genetics , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism
18.
Sci Rep ; 7(1): 13101, 2017 10 12.
Article En | MEDLINE | ID: mdl-29026134

Adipose tissue takes up glucose and releases lactate, thereby contributing significantly to systemic glucose and lactate homeostasis. This implies the necessity of upregulation of net acid and lactate flux capacity during adipocyte differentiation and function. However, the regulation of lactate- and acid/base transporters in adipocytes is poorly understood. Here, we tested the hypothesis that adipocyte thermogenesis, browning and differentiation are associated with an upregulation of plasma membrane lactate and acid/base transport capacity that in turn is important for adipocyte metabolism. The mRNA and protein levels of the lactate-H+ transporter MCT1 and the Na+,HCO3- cotransporter NBCe1 were upregulated in mouse interscapular brown and inguinal white adipose tissue upon cold induction of thermogenesis and browning. MCT1, MCT4, and NBCe1 were furthermore strongly upregulated at the mRNA and protein level upon differentiation of cultured pre-adipocytes. Adipocyte differentiation was accompanied by increased plasma membrane lactate flux capacity, which was reduced by MCT inhibition and by MCT1 knockdown. Finally, in differentiated brown adipocytes, glycolysis (assessed as ECAR), and after noradrenergic stimulation also oxidative metabolism (OCR), was decreased by MCT inhibition. We suggest that upregulation of MCT1- and MCT4-mediated lactate flux capacity and NBCe1-mediated HCO3-/pH homeostasis are important for the physiological function of mature adipocytes.


Adipocytes/metabolism , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Lactic Acid/metabolism , Monocarboxylic Acid Transporters/metabolism , Symporters/metabolism , Adipocytes/cytology , Adipogenesis/genetics , Adipogenesis/physiology , Adipose Tissue, Brown/cytology , Adipose Tissue, White/cytology , Animals , HEK293 Cells , Humans , Isoproterenol , Mice , Monocarboxylic Acid Transporters/genetics , Muscle Proteins/genetics , Muscle Proteins/metabolism , Sodium-Bicarbonate Symporters/genetics , Sodium-Bicarbonate Symporters/metabolism , Symporters/genetics
19.
PLoS One ; 12(9): e0185624, 2017.
Article En | MEDLINE | ID: mdl-28957413

Brown adipose tissue with its constituent brown adipocytes is a promising therapeutic target in metabolic disorders due to its ability to dissipate energy and improve systemic insulin sensitivity and glucose homeostasis. The molecular control of brown adipocyte differentiation and function has been extensively studied in mice, but relatively little is known about such regulatory mechanisms in humans, which in part is due to lack of human brown adipose tissue derived cell models. Here, we used retrovirus-mediated overexpression to stably integrate human telomerase reverse transcriptase (TERT) into stromal-vascular cell fractions from deep and superficial human neck adipose tissue biopsies from the same donor. The brown and white pre-adipocyte cell models (TERT-hBA and TERT-hWA, respectively) displayed a stable proliferation rate and differentiation until at least passage 20. Mature TERT-hBA adipocytes expressed higher levels of thermogenic marker genes and displayed a higher maximal respiratory capacity than mature TERT-hWA adipocytes. TERT-hBA adipocytes were UCP1-positive and responded to ß-adrenergic stimulation by activating the PKA-MKK3/6-p38 MAPK signaling module and increasing thermogenic gene expression and oxygen consumption. Mature TERT-hWA adipocytes underwent efficient rosiglitazone-induced 'browning', as demonstrated by strongly increased expression of UCP1 and other brown adipocyte-enriched genes. In summary, the TERT-hBA and TERT-hWA cell models represent useful tools to obtain a better understanding of the molecular control of human brown and white adipocyte differentiation and function as well as of browning of human white adipocytes.


Adipocytes/cytology , Adipose Tissue, Brown/cytology , Adipose Tissue, White/cytology , Tissue Donors , Adipocytes/drug effects , Biopsy , Cell Line, Transformed , Colforsin/pharmacology , Humans , Isoproterenol/pharmacology , Neck , Retroviridae/genetics , Rosiglitazone , Telomerase/genetics , Thermogenesis , Thiazolidinediones/pharmacology
20.
Sci Rep ; 7(1): 4052, 2017 06 22.
Article En | MEDLINE | ID: mdl-28642579

Brown adipose tissue takes up large amounts of glucose during cold exposure in mice and humans. Here we report an induction of glucose transporter 1 expression and increased expression of several glycolytic enzymes in brown adipose tissue from cold-exposed mice. Accordingly, these genes were also induced after ß-adrenergic activation of cultured brown adipocytes, concomitant with accumulation of hypoxia inducible factor-1α (HIF-1α) protein levels. HIF-1α accumulation was dependent on uncoupling protein 1 and generation of mitochondrial reactive oxygen species. Expression of key glycolytic enzymes was reduced after knockdown of HIF-1α in mature brown adipocytes. Glucose consumption, lactate export and glycolytic capacity were reduced in brown adipocytes depleted of Hif-1α. Finally, we observed a decreased ß-adrenergically induced oxygen consumption in Hif-1α knockdown adipocytes cultured in medium with glucose as the only exogenously added fuel. These data suggest that HIF-1α-dependent regulation of glycolysis is necessary for maximum glucose metabolism in brown adipocytes.


Adipocytes, Brown/metabolism , Glucose/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Adipocytes, Brown/drug effects , Adrenergic beta-Agonists/pharmacology , Animals , Cells, Cultured , Cold Temperature , Gene Expression Regulation/drug effects , Gene Expression Regulation, Enzymologic/drug effects , Glucose Transport Proteins, Facilitative/genetics , Glucose Transport Proteins, Facilitative/metabolism , Glycolysis/drug effects , Glycolysis/genetics , Hypoxia , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Male , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Models, Biological , Thermogenesis/drug effects , Thermogenesis/genetics
...