Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 11(10): e0164109, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27760220

RESUMEN

INTRODUCTION: Ischemia/reperfusion injury (I/R-I) is a leading cause of acute kidney injury (AKI) and is associated with increased mortality. Danegaptide is a selective modifier of the gap junction protein connexion 43. It has cytoprotective as well as anti-arrhythmic properties and has been shown to reduce the size of myocardial infarct in pigs. The aim of this study was to investigate the ischemia-protective effect of Danegaptide in a porcine renal I/R-I model with two weeks follow up. METHODS: Unilateral renal I/R-I was induced in pigs by clamping the left renal artery over a two hour period. The model allowed examination of renal blood flow by magnetic resonance imaging (MRI) and the measurement of single kidney GFR two weeks after injury. Eleven animals were randomized to Danegaptide-infusion while nine animals received placebo. Kidney histology and urinary neutrophil gelatinase-associated lipocalin (NGAL) excretion were included as markers of AKI. RESULTS: Unilateral kidney I/R-I resulted in an immediate ~50% GFR reduction, associated with a four-fold increase in urinary NGAL-excretion. Fourteen days after I/R-I, the total GFR was ~75% of baseline with a significantly lower GFR in the injured left kidney compared to the right kidney. No differences in GFR were observed between the treated and non-treated animals immediately after I/R-I or at Day 14. Furthermore, no differences were observed in the urinary excretion of NGAL, renal blood flow or other markers of renal function. CONCLUSIONS: As expected this porcine renal I/R-I model was associated with reduced GFR two weeks after injury. Danegaptide did not improve renal function after I/R-I.


Asunto(s)
Antiarrítmicos/farmacología , Dipéptidos/farmacología , Riñón/efectos de los fármacos , Riñón/fisiopatología , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/fisiopatología , Animales , Antiarrítmicos/uso terapéutico , Biomarcadores/metabolismo , Dipéptidos/uso terapéutico , Modelos Animales de Enfermedad , Femenino , Tasa de Filtración Glomerular/efectos de los fármacos , Riñón/irrigación sanguínea , Riñón/patología , Oxígeno/metabolismo , Flujo Sanguíneo Regional/efectos de los fármacos , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Porcinos
2.
Biochem Pharmacol ; 108: 36-46, 2016 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-27002181

RESUMEN

BACKGROUND: A loss of repolarization reserve due to downregulation of K(+) currents has been observed in cultured ventricular myocytes. A similar reduction of K(+) currents is well documented under numerous pathophysiological conditions. We examined the extent of K(+) current downregulation in cultured canine cardiac myocytes and determined whether a dual K(+) current activator can normalize K(+) currents and restore action potential (AP) configuration. METHODS AND RESULTS: Ventricular myocytes were isolated and cultured for up to 48 h. Current and voltage clamp recordings were made using patch electrodes. Application of NS3623 to coronary-perfused left ventricular wedges resulted in increased phase 1 magnitude, epicardial AP notch and J wave amplitude. Patch clamp measurements of IKr and Ito revealed an increase in the magnitude of both currents. Culturing of Mid ventricular cells resulted in a significant decrease in Ito and IKr density. NS3623 increased Ito from 16.4 ± 2.23 to 31.8 ± 4.5 pA/pF, and IKr from 0.28 ± 0.06 to 0.47 ± 0.09 pA/pF after 2 days in culture. AP recordings from 2 day cultured cells exhibited a reduced phase 1 repolarization, AP prolongation, and early afterdepolarizations (EADs). NS3623 restored the AP notch and was able to suppress EADs. CONCLUSIONS: NS3623 is a dual Ito and IKr activator. Application of this compound to cells with a reduced repolarization reserve resulted in an increase in these currents and a shortening of AP duration, increase in phase 1 repolarization and suppression of EADs. Our results suggest a potential benefit of K(+) current activators under conditions of reduced repolarization reserve including heart failure.


Asunto(s)
Potenciales de Acción , Células Musculares/efectos de los fármacos , Miocardio/citología , Compuestos de Fenilurea/farmacología , Canales de Potasio/fisiología , Tetrazoles/farmacología , Animales , Células Cultivadas , Perros , Femenino , Ventrículos Cardíacos/citología , Masculino , Células Musculares/fisiología
3.
J Cardiovasc Pharmacol ; 57(6): 672-81, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21394037

RESUMEN

Atrial fibrillation (AF) is associated with increased morbidity and is in addition the most prevalent cardiac arrhythmia. Compounds used in pharmacological treatment has traditionally been divided into Na(+) channel inhibitors, ß-blockers, K(+) channel inhibitors, and Ca(2+) channel inhibitors, whereas newer multichannel blockers such as amiodarone and ranolazine have been introduced later. This study was devoted to the evaluation of an acute pacing-induced in vivo model of AF in rats. Antiarrhythmic effects of well-known compounds such as lidocaine, dofetilide, and ranolazine were confirmed in this model. In addition, antiarrhythmic effects of different inhibitors of Ca(2+)-activated small conductance K(+) (SK) channels were demonstrated. Intravenous application of 5 mg/kg of the negative SK channel modulator NS8593 reduced AF duration by 64.5%, and the lowest significantly effective dose was 1.5 mg/kg. A dose-effect relationship was established based on 6 different dose groups. Furthermore, it was demonstrated that the antiarrhythmic effect of NS8593 and other tested drugs was associated with an increase in atrial effective refractory period. The functional role of SK channels was confirmed by 2 other SK channel inhibitors, UCL1684 and apamin, thereby confirming the hypothesis that these channels might constitute a new promising target for antiarrhythmic treatment.


Asunto(s)
Antiarrítmicos/uso terapéutico , Fibrilación Atrial/prevención & control , Estimulación Cardíaca Artificial/efectos adversos , Bloqueadores de los Canales de Potasio/uso terapéutico , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/antagonistas & inhibidores , 1-Naftilamina/administración & dosificación , 1-Naftilamina/análogos & derivados , 1-Naftilamina/uso terapéutico , Alcanos/uso terapéutico , Anestesia , Animales , Antiarrítmicos/administración & dosificación , Apamina/uso terapéutico , Fibrilación Atrial/tratamiento farmacológico , Fibrilación Atrial/etiología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Proteínas de Insectos/uso terapéutico , Masculino , Terapia Molecular Dirigida , Bloqueadores de los Canales de Potasio/administración & dosificación , Compuestos de Quinolinio/uso terapéutico , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Tiempo de Reacción/efectos de los fármacos , Factores de Tiempo
4.
Circ Arrhythm Electrophysiol ; 3(4): 380-90, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20562443

RESUMEN

BACKGROUND: Recently, evidence has emerged that small-conductance Ca(2+)-activated K(+) (SK) channels are predominantly expressed in the atria in a number of species including human. In rat, guinea pig, and rabbit ex vivo and in vivo models of atrial fibrillation (AF), we used 3 different SK channel inhibitors, UCL1684, N-(pyridin-2-yl)-4-(pyridin-2-yl)thiazol-2-amine (ICA), and NS8593, to assess the hypothesis that pharmacological inhibition of SK channels is antiarrhythmic. METHODS AND RESULTS: In isolated, perfused guinea pig hearts, AF could be induced in all control hearts (n=7) with a combination of 1 micromol/L acetylcholine combined with electric stimulation. Pretreatment with 3 micromol/L NS8593, which had no effect on QT interval, prolonged the atrial effective refractory period by 37.1+/-7.7% (P<0.001) and prevented acetylcholine-induced AF (P<0.001, n=7). After AF induction, perfusion with NS8593 (10 micromol/L), UCL1684 (1 micromol/L), or ICA (1 micromol/L) terminated AF in all hearts, comparable to 10 micromol/L amiodarone. In isolated, perfused rat hearts, AF was induced with electric stimulation; 10 micromol/L NS8593 terminated AF and prevented reinduction of AF in all hearts (n=6, P<0.001). In all hearts, AF could be reinduced after washing. In isolated, perfused rabbit hearts, AF was induced with 10 micromol/L acetylcholine and burst pacing; 10 micromol/L NS8593 terminated AF and prevented reinduction of AF in all hearts (n=6, P<0.001). After washing, AF could be reinduced in 75% of the hearts (n=4, P=0.06). In an in vivo rat model of acute AF induced by burst pacing, injection of 5 mg/kg of either NS8593 or amiodarone shortened AF duration significantly to (23.2+/-20.0%, P<0.001, n=5, and 26.2+/-17.9%, P<0.001, n=5, respectively) as compared with injection of vehicle (96.3+/-33.2%, n=5). CONCLUSIONS: Inhibition of SK channels prolongs atrial effective refractory period without affecting QT interval and prevents and terminates AF ex vivo and in vivo, thus offering a promising new therapeutic opportunity in the treatment of AF.


Asunto(s)
Antiarrítmicos/farmacología , Fibrilación Atrial/tratamiento farmacológico , Fibrilación Atrial/prevención & control , Miocardio/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio Calcio-Activados/antagonistas & inhibidores , 1-Naftilamina/análogos & derivados , 1-Naftilamina/farmacología , Acetilcolina/farmacología , Potenciales de Acción , Alcanos/farmacología , Animales , Fibrilación Atrial/metabolismo , Fibrilación Atrial/fisiopatología , Estimulación Cardíaca Artificial , Relación Dosis-Respuesta a Droga , Electrocardiografía , Femenino , Cobayas , Técnicas In Vitro , Masculino , Perfusión , Canales de Potasio Calcio-Activados/metabolismo , Piridinas/farmacología , Compuestos de Quinolinio/farmacología , Conejos , Ratas , Ratas Sprague-Dawley , Tiazoles/farmacología , Factores de Tiempo
5.
J Cardiovasc Pharmacol ; 54(2): 169-77, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19568177

RESUMEN

The ionic current responsible for terminating the action potential (AP), and thereby in part determining the AP duration (APD), is the potassium current (IK), consisting of primarily two components: a rapidly (IKr) and a slowly (IKs) activating delayed rectifier potassium current. The aim of this study was to evaluate potential antiarrhythmic effects of compound induced IKs activation using the benzodiazepine L-364,373 (R-L3). Ventricular myocytes from guinea pigs were isolated and whole-cell current clamping was performed at 35 degrees C. It was found that 1 microM R-L3 significantly reduced the APD90 at pacing frequencies of 1, 2, and 4 Hz when compared to control (40 +/- 6%, 22 +/- 2%, and 32 +/- 2%, respectively). The reduction of APD90 was accompanied by a reduced triangulation (given as APD30-90) when compared to control at all pacing frequencies (62 +/- 7 ms vs. 41 +/- 3 ms, 55 +/- 5 ms vs. 35 +/- 6 ms, and 45 +/- 4 ms vs. 32 +/- 2 ms, at 1 Hz, 2 Hz, and 4 Hz, respectively). The abbreviated APDs also resulted in a reduction in the relative refractory period, and no direct protection against pacing induced early after-depolarizations (EAD) could be observed. However, an increase in repolarizing capacity was seen with 1 microM R-L3, as more complete repolarization of the AP was achieved before EADs could be elicited. Finally, a functional demonstration of the repolarization reserve revealed that increased IKs can counteract a pharmacologically reduced IKr. In conclusion, pharmacological activation of IKs possesses both pro- and antiarrhythmic characters. The most prominent antiarrhythmic propensity is the ability for IKs activation to rescue a cellular model of long QT type 2.


Asunto(s)
Antiarrítmicos/farmacología , Benzodiazepinas/farmacología , Síndrome de QT Prolongado/tratamiento farmacológico , Miocitos Cardíacos/efectos de los fármacos , Animales , Canales de Potasio de Tipo Rectificador Tardío/efectos de los fármacos , Canales de Potasio de Tipo Rectificador Tardío/metabolismo , Modelos Animales de Enfermedad , Electrocardiografía , Electrofisiología , Femenino , Cobayas , Ventrículos Cardíacos/metabolismo , Síndrome de QT Prolongado/inducido químicamente , Síndrome de QT Prolongado/fisiopatología , Miocitos Cardíacos/metabolismo
6.
Heart Rhythm ; 6(1): 100-6, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19121808

RESUMEN

BACKGROUND: Long QT syndrome type 3 (LQT3) is an inherited cardiac disorder caused by gain-of-function mutations in the cardiac voltage-gated sodium channel, Na(v)1.5. LQT3 is associated with the polymorphic ventricular tachycardia torsades de pointes (TdP), which can lead to syncope and sudden cardiac death. The sea anemone toxin ATX-II has been shown to inhibit the inactivation of Na(v)1.5, thereby closely mimicking the underlying cause of LQT3 in patients. OBJECTIVE: The hypothesis for this study was that activation of the I(Kr) current could counteract the proarrhythmic effects of ATX-II. METHODS: Two different activators of I(Kr), NS3623 and mallotoxin (MTX), were used in patch clamp studies of ventricular cardiac myocytes acutely isolated from guinea pig to test the effects of selective I(Kr) activation alone and in the presence of ATX-II. Action potentials were elicited at 1 Hz by current injection and the cells were kept at 32 degrees C to 35 degrees C. RESULTS: NS3623 significantly shortened action potential duration at 90% repolarization (APD(90)) compared with controls in a dose-dependent manner. Furthermore, it reduced triangulation, which is potentially antiarrhythmic. Application of ATX-II (10 nM) was proarrhythmic, causing a profound increase of APD(90) as well as early afterdepolarizations and increased beat-to-beat variability. Two independent I(Kr) activators attenuated the proarrhythmic effects of ATX-II. NS3623 did not affect the late sodium current (I(NaL)) in the presence of ATX-II. Thus, the antiarrhythmic effect of NS3623 is likely to be caused by selective I(Kr) activation. CONCLUSION: The present data show the antiarrhythmic potential of selective I(Kr) activation in a cellular model of the LQT3 syndrome.


Asunto(s)
Ventrículos Cardíacos/patología , Activación del Canal Iónico/fisiología , Síndrome de QT Prolongado/tratamiento farmacológico , Miocitos Cardíacos/metabolismo , Compuestos de Fenilurea/farmacología , Canales de Potasio/metabolismo , Canales de Sodio/metabolismo , Tetrazoles/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Canales de Cloruro , Modelos Animales de Enfermedad , Femenino , Cobayas , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/metabolismo , Síndrome de QT Prolongado/metabolismo , Síndrome de QT Prolongado/patología , Miocitos Cardíacos/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.5 , Técnicas de Placa-Clamp , Canales de Potasio/efectos de los fármacos
7.
Pflugers Arch ; 457(5): 979-88, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18762970

RESUMEN

Activation of the large-conductance Ca(2+)-activated K(+) channel (BK) in the cardiac inner mitochondrial membrane has been suggested to protect the heart against ischemic injury. However, these findings are limited by the low selectivity profile and potency of the BK channel activator (NS1619) used. In the present study, we address the cardioprotective role of BK channels using a novel, potent, selective, and chemically unrelated BK channel activator, NS11021. Using electrophysiological recordings of heterologously expressed channels, NS11021 was found to activate BK alpha + beta1 channel complexes, while producing no effect on cardiac K(ATP) channels. The cardioprotective effects of NS11021-induced BK channel activation were studied in isolated, perfused rat hearts subjected to 35 min of global ischemia followed by 120 min of reperfusion. 3 microM NS11021 applied prior to ischemia or at the onset of reperfusion significantly reduced the infarct size [control: 44.6 +/- 2.0%; NS11021: 11.4 +/- 2.0%; NS11021 at reperfusion: 19.8 +/- 3.3% (p < 0.001 for both treatments compared to control)] and promoted recovery of myocardial performance. Co-administration of the BK-channel inhibitor paxilline (3 microM) antagonized the protective effect. These findings suggest that tissue damage induced by ischemia and reperfusion can be reduced by activation of cardiac BK channels.


Asunto(s)
Canales de Potasio de Gran Conductancia Activados por el Calcio/fisiología , Daño por Reperfusión Miocárdica/prevención & control , Transportadoras de Casetes de Unión a ATP/biosíntesis , Transportadoras de Casetes de Unión a ATP/efectos de los fármacos , Animales , Células Cultivadas , Humanos , Técnicas In Vitro , Indoles/farmacología , Canales KATP/efectos de los fármacos , Canales de Potasio de Gran Conductancia Activados por el Calcio/efectos de los fármacos , Masculino , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/fisiología , Contracción Miocárdica/efectos de los fármacos , Oocitos/metabolismo , Canales de Potasio de Rectificación Interna/biosíntesis , Canales de Potasio de Rectificación Interna/efectos de los fármacos , Ratas , Receptores de Droga/biosíntesis , Receptores de Droga/efectos de los fármacos , Receptores de Sulfonilureas , Tetrazoles/farmacología , Tiourea/análogos & derivados , Tiourea/farmacología , Función Ventricular/efectos de los fármacos , Xenopus laevis
8.
Cell Physiol Biochem ; 22(5-6): 611-24, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19088443

RESUMEN

The short QT syndrome is a newly discovered pro-arrhythmic condition, which may cause ventricular fibrillation and sudden death. Short QT can originate from the apparent gain-of-function mutation N588K in the hERG potassium channel that conducts repolarising I(Kr) current. The present study describes a profound biophysical characterization of HERG-N588K revealing both loss-of-function and gain-of-function properties of the mutant. Experiments were conducted after heterologous expression in both Xenopus laevis oocytes and mammalian cells and at both room temperature and at 37 degrees C. Also the impact of the beta-subunits KCNE2 was investigated. The most prominent loss-of-function property of HERG-N588K was reduced tail currents but also the activation properties was compromised. Based on these biophysical results we suggest that the general view of HERG-N588K being a gain-of-function is modified to a mixed gain- and loss-of-function mutation. This might also have impact on the pathological picture of the HERG-N588K channels ability to trigger arrhythmic events.


Asunto(s)
Sustitución de Aminoácidos , Arritmias Cardíacas/genética , Fenómenos Biofísicos , Canales de Potasio Éter-A-Go-Go/genética , Proteínas Mutantes/metabolismo , Mutación/genética , Potenciales de Acción , Animales , Asparagina/genética , Línea Celular , Humanos , Activación del Canal Iónico , Lisina/genética , Temperatura , Factores de Tiempo , Xenopus
9.
J Cardiovasc Pharmacol ; 52(1): 35-41, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18594476

RESUMEN

The long QT syndrome is characterized by a prolongation of the QT interval measured on the surface electrocardiogram. Prolonging the QT interval increases the risk of dangerous ventricular fibrillations, eventually leading to sudden cardiac death. Pharmacologically induced QT interval prolongations are most often caused by antagonizing effects on the repolarizing cardiac current called IKr. In humans IKr is mediated by the human ether-a-go-go related gene (hERG) potassium channel. We recently presented NS3623, a compound that selectively activates this channel. The present study was dedicated to examining the in vivo effects of NS3623. Injection of 30 mg/kg NS3623 shortened the corrected QT interval by 25 +/- 4% in anaesthetized guinea pigs. Accordingly, 50 mg/kg of NS3623 shortened the QT interval by 30 +/- 6% in conscious guinea pigs. Finally, pharmacologically induced QT prolongation by a hERG channel antagonist (0.15 mg/kg E-4031) could be reverted by injection of NS3623 (50 mg/kg) in conscious guinea pigs. In conclusion, the present in vivo study demonstrates that injection of the hERG channel agonist NS3623 results in shortening of the QTc interval as well as reversal of a pharmacologically induced QT prolongation in both anaesthetized and conscious guinea pigs.


Asunto(s)
Antiarrítmicos/farmacología , Canales de Potasio de Tipo Rectificador Tardío/agonistas , Canales de Potasio Éter-A-Go-Go/agonistas , Frecuencia Cardíaca/efectos de los fármacos , Compuestos de Fenilurea/farmacología , Tetrazoles/farmacología , Animales , Estado de Conciencia , Canales de Potasio de Tipo Rectificador Tardío/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Electrocardiografía , Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Femenino , Cobayas , Frecuencia Cardíaca/fisiología , Humanos , Síndrome de QT Prolongado/inducido químicamente , Síndrome de QT Prolongado/fisiopatología , Piperidinas/efectos adversos , Piperidinas/farmacología , Piridinas/efectos adversos , Piridinas/farmacología
10.
Prog Biophys Mol Biol ; 98(2-3): 347-62, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19351523

RESUMEN

The cardiac action potential is the result of an orchestrated function of a number of different ion channels. Action potential repolarisation in humans relies on three potassium current components named I(Kr), I(Ks) and I(K1) with party overlapping functions. The ion channel alpha-subunits conducting these currents are hERG1 (Kv11.1), KCNQ1 (Kv7.1) and Kir2.1. Loss-of-function in any of these currents can result in long QT syndrome. Long QT is a pro-arrhythmic disease with increased risk of developing lethal ventricular arrhythmias such as Torsade de Pointes and ventricular fibrillation. In addition to congenital long QT, acquired long QT can also constitute a safety risk. Especially unintended inhibition of the hERG1 channel constitutes a major concern in the development of new drugs. Based on this knowledge is has been speculated whether activation of the hERG1 channel could be anti-arrhythmic and thereby constitute a new principle in treatment of cardiac arrhythmogenic disorders. The first hERG1 channel agonist was reported in 2005 and a limited number of such compounds are now available. In the present text we review results obtained by hERG1 channel activation in a number of cardiac relevant settings from in vitro to in vivo. It is demonstrated how the principle of hERG1 channel activation under certain circumstances can constitute a new anti-arrhythmogenic principle. Finally, important conceptual differences between the short QT syndrome and the hERG1 channel activation, are evaluated.


Asunto(s)
Antiarrítmicos/farmacología , Arritmias Cardíacas/tratamiento farmacológico , Canales de Potasio Éter-A-Go-Go/agonistas , Potenciales de Acción , Arritmias Cardíacas/etiología , Arritmias Cardíacas/metabolismo , Fenómenos Biofísicos , Humanos , Activación del Canal Iónico , Canales KATP/agonistas
11.
Basic Clin Pharmacol Toxicol ; 100(5): 316-22, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17448117

RESUMEN

In neuronal tissue, KCNQ2-5 channels conduct the physiologically important M-current. In some neurones, the M-current may in addition be conducted partly by ERG potassium channels, which have widely overlapping expression with the KCNQ channel subunits. XE991 and linopiridine are known to be standard KCNQ potassium channel blockers. These compounds have been used in many different tissues as specific pharmacological tools to discern native currents conducted by KCNQ channels from other potassium currents. In this article, we demonstrate that ERG1-2 channels are also reversibly inhibited by XE991 in the micromolar range (EC(50) 107 microM for ERG1). The effect has been characterized in Xenopus laevis oocytes expressing ERG1-2 and in the mammalian HEK293 cell line stably expressing ERG1 channels. The IC(50) values for block of KCNQ channels by XE991 range 1-65 microM. In conclusion, great care should be taken when choosing the concentration of XE991 to use for experiments on native potassium channels or animal studies in order to be able to conclude on selective KCNQ channel-mediated effects.


Asunto(s)
Acetilcolina/metabolismo , Antracenos/farmacología , Canales de Potasio Éter-A-Go-Go/metabolismo , Oocitos/efectos de los fármacos , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio con Entrada de Voltaje/metabolismo , Animales , Carbamatos/farmacología , Línea Celular , Cromanos/farmacología , Relación Dosis-Respuesta a Droga , Canal de Potasio ERG1 , Electrofisiología , Canales de Potasio Éter-A-Go-Go/genética , Expresión Génica , Indoles/farmacología , Oocitos/metabolismo , Técnicas de Placa-Clamp , Fenilendiaminas/farmacología , Canales de Potasio con Entrada de Voltaje/genética , Piridinas/farmacología , Xenopus laevis
12.
J Pharmacol Exp Ther ; 321(3): 996-1002, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17325228

RESUMEN

Recently, attention has been drawn to compounds that activate the human ether-a-go-go channel potassium channel (hERG), which is responsible for the repolarizing rapid delayed rectifier potassium current (I(Kr)) in the mammalian myocardium. The compound NS3623 [N-(4-bromo-2-(1H-tetrazol-5-yl)-phenyl)-N'-(3'-trifluoromethylphenyl) urea] increases the macroscopic current conducted by the hERG channels by increasing the time constant for channel inactivation, which we have reported earlier. In vitro studies suggest that pharmacological activation is an attractive approach for the treatment of some arrhythmias. We present here data that support that NS3623 affects native I(Kr) and report the effects that activating this potassium current have in the intact guinea pig heart. In Langendorff-perfused hearts, the compound showed a concentration-dependent shortening of action potential duration, which was also detected as concentration-dependent shorter QT intervals. There was no sign of action potential triangulation or reverse use dependence. NS3623 decreased QT variability and distinctly decreased the occurrence of extrasystoles in the acutely bradypaced hearts. Taken together, the present data strongly support the concept of using hERG activators as a treatment for certain kinds of arrhythmias and suggest further investigation of this new approach.


Asunto(s)
Antiarrítmicos/farmacología , Bradicardia/fisiopatología , Canales de Potasio Éter-A-Go-Go/fisiología , Corazón/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Animales , Electrocardiografía , Canales de Potasio Éter-A-Go-Go/agonistas , Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Cobayas , Corazón/fisiología , Corazón/fisiopatología , Frecuencia Cardíaca/efectos de los fármacos , Técnicas In Vitro , Perfusión , Compuestos de Fenilurea/farmacología , Piperidinas/farmacología , Piridinas/farmacología , Tetrazoles/farmacología , Función Ventricular/efectos de los fármacos
13.
Mol Pharmacol ; 70(4): 1319-29, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16825484

RESUMEN

Within the field of new antiarrhythmic compounds, the interesting idea of activating human ether-a-go-go-related gene (HERG1) potassium channels has recently been introduced. Potentially, drugs that increase HERG1 channel activity will augment the repolarizing current of the cardiac myocytes and stabilize the diastolic interval. This may make the myocardium more resistant to events that cause arrhythmias. We here present the compound N-(4-bromo-2-(1H-tetrazol-5-yl)-phenyl)-N'-(3'-trifluoromethylphenyl)urea (NS3623), which has the ability to activate HERG1 channels expressed in Xenopus laevis oocytes with an EC50 value of 79.4 microM. Exposure of HERG1 channels to NS3623 affects the voltage-dependent release from inactivation, resulting in a half-inactivation voltage that is rightward-shifted by 17.7 mV. Moreover, the compound affects the time constant of inactivation, leading to a slower onset of inactivation of the macroscopic HERG1 currents. We also characterized the ability of NS3623 to increase the activity of different mutated HERG1 channels. The mutants S620T and S631A are severely compromised in their ability to inactivate. Application of NS3623 to any of these two mutants did not result in increased HERG1 current. In contrast, application of NS3623 to the mutant F656M increased HERG1 current to a larger extent than what was observed with wild-type HERG1 channels. Because the amino acid F656 is essential for high-affinity inhibition of HERG1 channels, it is concluded that NS3623 has a dual mode of action, being both an activator and an inhibitor of HERG1 channels. Finally, we show that NS3623 has the ability to shorten action potential durations in guinea pig papillary muscle.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/fisiología , Compuestos de Fenilurea/farmacología , Tetrazoles/farmacología , Xenopus laevis , Animales , Línea Celular , Canales de Potasio Éter-A-Go-Go/química , Canales de Potasio Éter-A-Go-Go/genética , Cobayas , Humanos , Técnicas In Vitro , Potenciales de la Membrana , Estructura Molecular , Oocitos/efectos de los fármacos , Músculos Papilares/metabolismo , Técnicas de Placa-Clamp , Compuestos de Fenilurea/química , Tetrazoles/química
14.
Biochem Biophys Res Commun ; 343(4): 1224-33, 2006 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-16581021

RESUMEN

To obtain information about a possible frequency-dependent modulation of HERG1 and hKCNQ1 channels, we performed heterologous expression in Xenopus laevis oocytes. Channel activation was obtained by voltage protocols roughly imitating cardiac action potentials at frequencies of 1, 3, 5.8, and 8.3Hz. The activity of HERG1 channels was inhibited down to 65% at high frequencies. In contrast, hKCNQ1 channel activity was increased up to 525% at high frequencies. The general frequency-dependent modulation of the channels was unaffected by both co-expression of hKCNQ1 and HERG1 channels, and by the presence of the beta-subunits KCNE1 and KCNE2. In addition, the functional role of HERG1 in native guinea pig cardiac myocytes was demonstrated at different pacing frequencies by application of 10microM of the new HERG1 activator, NS1643. In conclusion, we have demonstrated that HERG1 and hKCNQ1 channels are inversely modulated by stimulation frequency.


Asunto(s)
Potenciales de Acción , Canales de Potasio Éter-A-Go-Go/fisiología , Canal de Potasio KCNQ1/fisiología , Miocitos Cardíacos/fisiología , Animales , Células Cultivadas , Canal de Potasio ERG1 , Femenino , Cobayas , Humanos , Activación del Canal Iónico , Oocitos/fisiología , Técnicas de Placa-Clamp , Canales de Potasio con Entrada de Voltaje/fisiología , Xenopus laevis
15.
Mol Pharmacol ; 69(1): 266-77, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16219910

RESUMEN

The cardiac action potential is generated by a concerted action of different ion channels and transporters. Dysfunction of any of these membrane proteins can give rise to cardiac arrhythmias, which is particularly true for the repolarizing potassium channels. We suggest that an increased repolarization current could be a new antiarrhythmic principle, because it possibly would attenuate afterdepolarizations, ischemic leak currents, and reentry phenomena. Repolarization of the cardiac myocytes is crucially dependent on the late rapid delayed rectifier current (I(Kr)) conducted by ether-a-go-go-related gene (ERG) potassium channels. We have developed the diphenylurea compound 1,3-bis-(2-hydroxy-5-trifluoromethyl-phenyl)-urea (NS1643) and tested whether this small organic molecule could increase the activity of human ERG (HERG) channels expressed heterologously. In Xenopus laevis oocytes, NS1643 increased both steady-state and tail current at all voltages tested. The EC(50) value for HERG channel activation was 10.5 microM. These results were reproduced on HERG channels expressed in mammalian human embryonic kidney 293 cells. In guinea pig cardiomyocytes, studied by patch clamp, application of 10 microM NS1643 activated I(Kr) and significantly decreased the action potential duration to 65% of the control values. The effect could be reverted by application of the specific HERG channel inhibitor 4'-[[1-[2-(6-methyl-2-pyridyl)ethyl]-4-piperidinyl]carbonyl]-methanesulfonanilide (E-4031) at 100 nM. Application of NS1643 also resulted in a prolonged postrepolarization refractory time. Finally, cardiomyocytes exposed to NS1643 resisted reactivation by small depolarizing currents mimicking early afterdepolarizations. In conclusion, HERG channel activation by small molecules such as NS1643 increases the repolarization reserve and presents an interesting new antiarrhythmic approach.


Asunto(s)
Antiarrítmicos/farmacología , Cresoles/farmacología , Canales de Potasio Éter-A-Go-Go/efectos de los fármacos , Compuestos de Fenilurea/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Calcio/metabolismo , Línea Celular , Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go/metabolismo , Humanos , Contracción Miocárdica/efectos de los fármacos , Miocardio/citología , Miocardio/metabolismo , Sodio/metabolismo , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA