Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Chem Biol ; 18(4): 969-981, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-36976909

RESUMEN

Target class profiling (TCP) is a chemical biology approach to investigate understudied biological target classes. TCP is achieved by developing a generalizable assay platform and screening curated compound libraries to interrogate the chemical biological space of members of an enzyme family. In this work, we took a TCP approach to investigate inhibitory activity across a set of small-molecule methyltransferases (SMMTases), a subclass of methyltransferase enzymes, with the goal of creating a launchpad to explore this largely understudied target class. Using the representative enzymes nicotinamide N-methyltransferase (NNMT), phenylethanolamine N-methyltransferase (PNMT), histamine N-methyltransferase (HNMT), glycine N-methyltransferase (GNMT), catechol O-methyltransferase (COMT), and guanidinoacetate N-methyltransferase (GAMT), we optimized high-throughput screening (HTS)-amenable assays to screen 27,574 unique small molecules against all targets. From this data set, we identified a novel inhibitor which selectively inhibits the SMMTase HNMT and demonstrated how this platform approach can be leveraged for a targeted drug discovery campaign using the example of HNMT.


Asunto(s)
Histamina N-Metiltransferasa , Metiltransferasas , Metiltransferasas/química , Ensayos Analíticos de Alto Rendimiento , Descubrimiento de Drogas
2.
ACS Pharmacol Transl Sci ; 3(6): 1352-1360, 2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33330843

RESUMEN

The COVID-19 pandemic, caused by SARS-CoV-2, is a pressing public health emergency garnering a rapid response from scientists across the globe. Host cell invasion is initiated through direct binding of the viral spike protein to the host receptor angiotensin-converting enzyme 2 (ACE2). Disrupting the spike protein-ACE2 interaction is a potential therapeutic target for treating COVID-19. We have developed a proximity-based AlphaLISA assay to measure the binding of SARS-CoV-2 spike protein receptor binding domain (RBD) to ACE2. Utilizing this assay platform, a drug-repurposing screen against 3384 small-molecule drugs and preclinical compounds was carried out, yielding 25 high-quality primary hits, of which only corilagin was validated in cherry-picking. This established AlphaLISA RBD-ACE2 platform can facilitate evaluation of biologics or small molecules that can perturb this essential viral-host interaction to further the development of interventions to address the global health pandemic.

3.
bioRxiv ; 2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32511420

RESUMEN

The National Center for Advancing Translational Sciences (NCATS) has developed an online open science data portal for its COVID-19 drug repurposing campaign - named OpenData - with the goal of making data across a range of SARS-CoV-2 related assays available in real-time. The assays developed cover a wide spectrum of the SARS-CoV-2 life cycle, including both viral and human (host) targets. In total, over 10,000 compounds are being tested in full concentration-response ranges from across multiple annotated small molecule libraries, including approved drug, repurposing candidates and experimental therapeutics designed to modulate a wide range of cellular targets. The goal is to support research scientists, clinical investigators and public health officials through open data sharing and analysis tools to expedite the development of SARS-CoV-2 interventions, and to prioritize promising compounds and repurposed drugs for further development in treating COVID-19.

4.
bioRxiv ; 2020 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-32577632

RESUMEN

The COVID-19 pandemic, caused by SARS-CoV-2, is a pressing public health emergency garnering rapid response from scientists across the globe. Host cell invasion is initiated through direct binding of the viral spike protein to the host receptor angiotensin-converting enzyme 2 (ACE2). Disrupting the spike-ACE2 interaction is a potential therapeutic target for treating COVID-19. We have developed a proximity-based AlphaLISA assay to measure binding of SARS-CoV-2 spike protein Receptor Binding Domain (RBD) to ACE2. Utilizing this assay platform, a drug-repurposing screen against 3,384 small molecule drugs and pre-clinical compounds was performed, yielding 25 high-quality, small-molecule hits that can be evaluated in cell-based models. This established AlphaLISA RBD-ACE2 platform can facilitate evaluation of biologics or small molecules that can perturb this essential viral-host interaction to further the development of interventions to address the global health pandemic.

5.
J Mol Biol ; 430(7): 935-947, 2018 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-29458127

RESUMEN

Nitric oxide synthase (NOS) is the primary generator of nitric oxide signals controlling diverse physiological processes such as neurotransmission and vasodilation. NOS activation is contingent on Ca2+/calmodulin binding at a linker between its oxygenase and reductase domains to induce large conformational changes that orchestrate inter-domain electron transfer. However, the structural dynamics underlying activation of full-length NOS remain ambiguous. Employing hydrogen-deuterium exchange mass spectrometry, we reveal mechanisms underlying neuronal NOS activation by calmodulin and regulation by phosphorylation. We demonstrate that calmodulin binding orders the junction between reductase and oxygenase domains, exposes the FMN subdomain, and elicits a more dynamic oxygenase active site. Furthermore, we demonstrate that phosphorylation partially mimics calmodulin activation to modulate neuronal NOS activity via long-range allostery. Calmodulin binding and phosphorylation ultimately promote a more dynamic holoenzyme while coordinating inter-domain communication and electron transfer.


Asunto(s)
Calmodulina/metabolismo , Óxido Nítrico Sintasa de Tipo I/química , Óxido Nítrico Sintasa de Tipo I/metabolismo , Regulación Alostérica , Dominio Catalítico , Medición de Intercambio de Deuterio , Activación Enzimática , Humanos , Conformación Proteica
6.
Biochemistry ; 54(19): 2931-42, 2015 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-25926001

RESUMEN

Recombinant antibodies spurred a revolution in medicine that saw the introduction of powerful therapeutics for treating a wide range of diseases, from cancers to autoimmune disorders and transplant rejection, with more applications looming on the horizon. Many of these therapeutic monoclonal antibodies (mAbs) are based on human immunoglobulin G1 (IgG1) or contain at least a portion of the molecule. Most mAbs require interactions with cell surface receptors for efficacy, including the Fc γ receptors. High-resolution structural models of antibodies and antibody fragments have been available for nearly 40 years; however, a thorough description of the structural features that determine the affinity with which antibodies interact with human receptors has not been published. In this review, we will cover the relevant history of IgG-related literature and how recent developments have changed our view of critical antibody-cell interactions at the atomic level with a nod to outstanding questions in the field and future prospects.


Asunto(s)
Anticuerpos Monoclonales/química , Fragmentos Fc de Inmunoglobulinas/química , Humanos , Estructura Secundaria de Proteína
7.
Structure ; 22(10): 1478-88, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25199692

RESUMEN

Immunoglobulin G1 (IgG1)-based therapies are widespread, and many function through interactions with low-affinity Fc γ receptors (FcγR). N-glycosylation of the IgG1 Fc domain is required for FcγR binding, though it is unclear why. Structures of the FcγR:Fc complex fail to explain this because the FcγR polypeptide does not bind the N-glycan. Here we identify a link between motion of the N-glycan and Fc:FcγRIIIa affinity that explains the N-glycan requirement. Fc F241 and F243 mutations decreased the N-glycan/polypeptide interaction and increased N-glycan mobility. The affinity of the Fc mutants for FcγRIIIa was directly proportional to the degree of glycan restriction (R(2) = 0.82). The IgG1 Fc K246F mutation stabilized the N-glycan and enhanced affinity for FcγRIIIa. Allosteric modulation of a protein/protein interaction represents a previously undescribed role for N-glycans in biology. Conserved features suggesting a similar N-glycan/aromatic interaction were also found in IgD, IgE, and IgM, but not IgA.


Asunto(s)
Inmunoglobulina G/química , Inmunoglobulina G/metabolismo , Receptores de IgG/metabolismo , Acetilglucosamina/química , Acetilglucosamina/metabolismo , Humanos , Inmunoglobulina D/química , Inmunoglobulina D/metabolismo , Inmunoglobulina E/química , Inmunoglobulina E/metabolismo , Fragmentos Fc de Inmunoglobulinas/química , Fragmentos Fc de Inmunoglobulinas/genética , Fragmentos Fc de Inmunoglobulinas/metabolismo , Inmunoglobulina G/genética , Inmunoglobulina M/química , Inmunoglobulina M/metabolismo , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Mutación , Polisacáridos/química , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Receptores de IgG/química , Receptores de IgG/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...