Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(20): 22256-22264, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38799366

RESUMEN

The superior performance of the Ti3C2Tx (MXene)-based supercapacitor in acidic electrolytes has recently gained much interest in the energy storage community. Nevertheless, its performance in most neutral electrolytes is unfavorably low, plausibly due to limited ion diffusion between the MXene layers. Herein, protonated g-C3N4 (pg-C3N4) is incorporated into the Ti3C2Tx electrode by using a facile self-assembling process and annealing, which results in increased interlayer d-spacing and electrical conductivity of the composite electrode. As a result, the annealed Ti3C2Tx/pg-C3N4 film revealed an enhanced ion-accessibility and gravimetric capacitance of 140 F g-1 in 1 M aqueous MgSO4 electrolyte. The cyclic stability test also indicates excellent capacitance retention, with negligible loss of capacitance over 10000 cycles.

2.
Glob Chall ; 7(4): 2200212, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37020621

RESUMEN

The rapidly increasing adoption of electric vehicles (EVs) worldwide is causing high demand for production of lithium-ion batteries (LIBs). Tremendous efforts have been made to develop different components of LIBs in addition to design of battery pack architectures as well as manufacturing processes to make better batteries with affordable prices. Nonetheless, sustainable use of LIBs relies on the availability and cost of rare metals, which are naturally concentrated in a few countries. In addition, toxic electrolytes used in LIBs pose concerns on environmental impacts if LIBs are not handled properly after decommissioned from EVs. Therefore, it is paramount to realize effective utilization of spent LIBs, where their remaining capacities can be reused in less demanding applications. Finally, electrode materials and other valuable components of LIBs can be recovered via recycling, completing their circular life cycle. In this review, available options of LIBs after their retirement from EV applications, including battery second use, repair of electrode materials by direct regeneration, and material recovery by hydrometallurgical or pyrometallurgical processes are discussed. Throughout the review, the discussion is based around current available technologies, their environmental impacts, and economic feasibility as well as provided examples of pilot and industrial scale adoption of the processes.

3.
ACS Nanosci Au ; 2(5): 433-439, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36281254

RESUMEN

MXenes are a growing family of 2D transition-metal carbides and nitrides, which display excellent performance in myriad of applications. Theoretical calculations suggest that manipulation of the MXene surface termination (such as =O or -F) could strongly alter their functional properties; however, experimental control of the MXene surface termination is still in the developmental stage. Here, we demonstrate that annealing MXenes in an Ar + O2 low-power plasma results in increased =O functionalization with minimal formation of secondary phases. We apply this method to two MXenes, Ti2CT x and Mo2TiC2T x (T x represents the mixed surface termination), and show that in both cases, the increased =O content increases the electrical resistance and decreases the surface transition-metal's electron count. For Mo2TiC2O x , we show that the O content can be reversibly altered through successive vacuum and plasma annealing. This work provides an effective way to tune MXene surface functionalization, which may unlock exciting surface-dependent properties.

4.
Nat Nanotechnol ; 17(11): 1192-1197, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36138199

RESUMEN

The MXene family of two-dimensional transition metal carbides and nitrides already includes ~50 members with distinct numbers of atomic layers, stoichiometric compositions and solid solutions, in-plane or out-of-plane ordering of atoms, and a variety of surface terminations. MXenes have shown properties that make them attractive for applications ranging from energy storage to electronics and medicine. Although this compositional variability allows fine-tuning of the MXene properties, it also creates challenges during the analysis of MXenes because of the presence of multiple light elements (for example, H, C, N, O, and F) in close proximity. Here, we show depth profiling of single particles of MXenes and their parent MAX phases with atomic resolution using ultralow-energy secondary-ion mass spectrometry. We directly detect oxygen in the carbon sublattice, thereby demonstrating the existence of oxycarbide MXenes. We also determine the composition of adjacent surface termination layers and show their interaction with each other. Analysis of the metal sublattice shows that Mo2TiAlC2 MAX exhibits perfect out-of-plane ordering, whereas Cr2TiAlC2 MAX exhibits some intermixing between Cr and Ti in the inner transition metal layer. Our results showcase the capabilities of the developed secondary-ion mass spectrometry technique to probe the composition of layered and two-dimensional materials with monoatomic-layer precision.

5.
ACS Sens ; 7(8): 2225-2234, 2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-35838305

RESUMEN

It is highly important to implement various semiconducting, such as n- or p-type, or conducting types of sensing behaviors to maximize the selectivity of gas sensors. To achieve this, researchers so far have utilized the n-p (or p-n) two-phase transition using doping techniques, where the addition of an extra transition phase provides the potential to greatly increase the sensing performance. Here, we report for the first time on an n-p-conductor three-phase transition of gas sensing behavior using Mo2CTx MXene, where the presence of organic intercalants and film thickness play a critical role. We found that 5-nm-thick Mo2CTx films with a tetramethylammonium hydroxide (TMAOH) intercalant displayed a p-type gas sensing response, while the films without the intercalant displayed a clear n-type response. Additionally, Mo2CTx films with thicknesses over 700 nm exhibited a conductor-type response, unlike the thinner films. It is expected that the three-phase transition was possible due to the unique and simultaneous presence of the intrinsic metallic conductivity and the high-density of surface functional groups of the MXene. We demonstrate that the gas response of Mo2CTx films containing tetramethylammonium (TMA) ions toward volatile organic compounds (VOCs), NH3, and NO2 is ∼30 times higher than that of deintercalated films, further showing the influence of intercalants on sensing performance. Also, DFT calculations show that the adsorption energy of NH3 and NO2 on Mo2CTx shifts from -0.973, -1.838 eV to -1.305, -2.750 eV, respectively, after TMA adsorption, demonstrating the influence of TMA in enhancing sensing performance.

6.
Chem Commun (Camb) ; 57(100): 13712-13715, 2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34874027

RESUMEN

The specific cell capacitance, equivalent series resistance (ESR) and equivalent distributed resistance (EDR) of porous carbon-based supercapacitors linearly depend on the cationic molecular length of room-temperature ionic liquids.

7.
Sci Transl Med ; 13(612): eabf8629, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34550728

RESUMEN

Soft bioelectronic interfaces for mapping and modulating excitable networks at high resolution and at large scale can enable paradigm-shifting diagnostics, monitoring, and treatment strategies. Yet, current technologies largely rely on materials and fabrication schemes that are expensive, do not scale, and critically limit the maximum attainable resolution and coverage. Solution processing is a cost-effective manufacturing alternative, but biocompatible conductive inks matching the performance of conventional metals are lacking. Here, we introduce MXtrodes, a class of soft, high-resolution, large-scale bioelectronic interfaces enabled by Ti3C2 MXene (a two-dimensional transition metal carbide nanomaterial) and scalable solution processing. We show that the electrochemical properties of MXtrodes exceed those of conventional materials and do not require conductive gels when used in epidermal electronics. Furthermore, we validate MXtrodes in applications ranging from mapping large-scale neuromuscular networks in humans to cortical neural recording and microstimulation in swine and rodent models. Last, we demonstrate that MXtrodes are compatible with standard clinical neuroimaging modalities.


Asunto(s)
Fenómenos Electrofisiológicos , Electrofisiología
8.
ACS Nano ; 15(9): 15274-15284, 2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34415730

RESUMEN

Identifying and understanding charge storage mechanisms is important for advancing energy storage. Well-separated peaks in cyclic voltammograms (CVs) are considered key indicators of diffusion-controlled electrochemical processes with distinct Faradaic charge transfer. Herein, we report on an electrochemical system with separated CV peaks, accompanied by surface-controlled partial charge transfer, in 2D Ti3C2Tx MXene in water-in-salt electrolytes. The process involves the insertion/desertion of desolvation-free cations, leading to an abrupt change of the interlayer spacing between MXene sheets. This unusual behavior increases charge storage at positive potentials, thereby increasing the amount of energy stored. This also demonstrates opportunities for the development of high-rate aqueous energy storage devices and electrochemical actuators using safe and inexpensive aqueous electrolytes.

9.
ACS Nano ; 15(4): 6420-6429, 2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33848136

RESUMEN

One of the primary factors limiting further research and commercial use of the two-dimensional (2D) titanium carbide MXene Ti3C2, as well as MXenes in general, is the rate at which freshly made samples oxidize and degrade when stored as aqueous suspensions. Here, we show that including excess aluminum during synthesis of the Ti3AlC2 MAX phase precursor leads to Ti3AlC2 grains with improved crystallinity and carbon stoichiometry (termed Al-Ti3AlC2). MXene nanosheets (Al-Ti3C2) produced from this precursor are of higher quality, as evidenced by their increased resistance to oxidation and an increase in their electronic conductivity up to 20 000 S/cm. Aqueous suspensions of stoichiometric single- to few-layer Al-Ti3C2 flakes produced from the modified Al-Ti3AlC2 have a shelf life of over ten months, compared to 1 to 2 weeks for previously published Ti3C2, even when stored in ambient conditions. Freestanding films made from Al-Ti3C2 suspensions stored for ten months show minimal decreases in electrical conductivity and negligible oxidation. Furthermore, oxidation of the improved Al-Ti3C2 in air initiates at temperatures that are 100-150 °C higher than that of conventional Ti3C2. The observed improvements in both the shelf life and properties of Al-Ti3C2 will facilitate the widespread use of this material.

10.
Nanoscale Horiz ; 5(12): 1557-1565, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33089267

RESUMEN

Two-dimensional (2D) transition metal carbides and nitrides known as MXenes have shown attractive functionalities such as high electronic conductivity, a wide range of optical properties, versatile transition metal and surface chemistry, and solution processability. Although extensively studied computationally, the magnetic properties of this large family of 2D materials await experimental exploration. 2D magnetic materials have recently attracted significant interest as model systems to understand low-dimensional magnetism and for potential spintronic applications. Here, we report on synthesis of Cr2TiC2Tx MXene and a detailed study of its magnetic as well as electronic properties. Using a combination of magnetometry, synchrotron X-ray linear dichroism, and field- and angular-dependent magnetoresistance measurements, we find clear evidence of a magnetic transition in Cr2TiC2Tx at approximately 30 K, which is not present in its bulk layered carbide counterpart (Cr2TiAlC2 MAX phase). This work presents the first experimental evidence of a magnetic transition in a MXene material and provides an exciting opportunity to explore magnetism in this large family of 2D materials.

11.
J Am Chem Soc ; 142(45): 19110-19118, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33108178

RESUMEN

Alloying is a long-established strategy to tailor properties of metals for specific applications, thus retaining or enhancing the principal elemental characteristics while offering additional functionality from the added elements. We propose a similar approach to the control of properties of two-dimensional transition metal carbides known as MXenes. MXenes (Mn+1Xn) have two sites for compositional variation: elemental substitution on both the metal (M) and carbon/nitrogen (X) sites presents promising routes for tailoring the chemical, optical, electronic, or mechanical properties of MXenes. Herein, we systematically investigated three interrelated binary solid-solution MXene systems based on Ti, Nb, and/or V at the M-site in a M2XTx structure (Ti2-yNbyCTx, Ti2-yVyCTx, and V2-yNbyCTx, where Tx stands for surface terminations) showing the evolution of electronic and optical properties as a function of composition. All three MXene systems show unlimited solubility and random distribution of metal elements in the metal sublattice. Optically, the MXene systems are tailorable in a nonlinear fashion, with absorption peaks from ultraviolet to near-infrared wavelength. The macroscopic electrical conductivity of solid solution MXenes can be controllably varied over 3 orders of magnitude at room temperature and 6 orders of magnitude from 10 to 300 K. This work greatly increases the number of nonstoichiometric MXenes reported to date and opens avenues for controlling physical properties of different MXenes with a limitless number of compositions possible through M-site solid solutions.

12.
Science ; 369(6502): 446-450, 2020 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-32703878

RESUMEN

Lightweight, ultrathin, and flexible electromagnetic interference (EMI) shielding materials are needed to protect electronic circuits and portable telecommunication devices and to eliminate cross-talk between devices and device components. Here, we show that a two-dimensional (2D) transition metal carbonitride, Ti3CNT x MXene, with a moderate electrical conductivity, provides a higher shielding effectiveness compared with more conductive Ti3C2T x or metal foils of the same thickness. This exceptional shielding performance of Ti3CNT x was achieved by thermal annealing and is attributed to an anomalously high absorption of electromagnetic waves in its layered, metamaterial-like structure. These results provide guidance for designing advanced EMI shielding materials but also highlight the need for exploring fundamental mechanisms behind interaction of electromagnetic waves with 2D materials.

13.
Nanoscale ; 12(26): 14204-14212, 2020 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-32608430

RESUMEN

Two-dimensional transition metal carbides, nitrides and carbonitrides, popular by the name MXenes, are a promising class of materials as they exhibit intriguing optical, optoelectronic and electrochemical properties. Taking advantage of their metallic conductivity and hydrophilicity, titanium carbide MXenes (Ti3C2Tx and others) are used to fabricate solution processable transparent conducting electrodes (TCEs) for the design of three-electrode electrochromic cells. However, the tunable electrochromic behavior of various titanium-based MXene compositions across the entire visible spectrum has not yet been demonstrated. Here, we investigate the intrinsic electrochromic properties of titanium-based MXenes, Ti3C2Tx, Ti3CNTx, Ti2CTx, and Ti1.6Nb0.4CTx, where individual MXenes serve as a transparent conducting, electrochromic, and plasmonic material layer. Plasmonic extinction bands for Ti3C2Tx, Ti2CTx and Ti1.6Nb0.4CTx are centered at 800, 550 and 480 nm, which are electrochemically tunable to 630, 470 and 410 nm, respectively, whereas Ti3CNTx shows a reversible change in transmittance in the wide visible range. Additionally, the switching rates of MXene electrodes with no additional transparent conductor electrodes are estimated and correlated with the respective electrical figure of merit values. This study demonstrates that MXene-based electrochromic cells are tunable in the entire visible spectrum and suggests the potential of the MXene family of materials in optoelectronic, plasmonic, and photonic applications, such as tunable visible optical filters and modulators, to name a few.

14.
ACS Nano ; 14(1): 204-217, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31804797

RESUMEN

MXenes are a family of two-dimensional (2D) transition metal carbides, nitrides, and carbonitrides with a general formula of Mn+1XnTx, in which two, three, or four atomic layers of a transition metal (M: Ti, Nb, V, Cr, Mo, Ta, etc.) are interleaved with layers of C and/or N (shown as X), and Tx represents surface termination groups such as -OH, ═O, and -F. Here, we report the scalable synthesis and characterization of a MXene with five atomic layers of transition metals (Mo4VC4Tx), by synthesizing its Mo4VAlC4 MAX phase precursor that contains no other MAX phase impurities. These phases display twinning at their central M layers which is not present in any other known MAX phases or MXenes. Transmission electron microscopy and X-ray diffraction were used to examine the structure of both phases. Energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and high-resolution scanning transmission electron microscopy with energy-dispersive X-ray spectroscopy were used to study the composition of these materials. Density functional theory calculations indicate that other five transition metal-layer MAX phases (M'4M″AlC4) may be possible, where M' and M″ are two different transition metals. The predicted existence of additional Al-containing MAX phases suggests that more M5C4Tx MXenes can be synthesized. Additionally, we characterized the optical, electronic, and thermal properties of Mo4VC4Tx. This study demonstrates the existence of an additional subfamily of M5X4Tx MXenes as well as a twinned structure, allowing for a wider range of 2D structures and compositions for more control over properties, which could lead to many different applications.

15.
ACS Appl Mater Interfaces ; 11(35): 32320-32327, 2019 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-31405272

RESUMEN

MXenes are a prominent family of two-dimensional materials because of their metallic conductivity and abundant surface functionalities. Although MXenes have been extensively studied as bulk particles or free-standing films, thin and transparent films are needed for optical, optoelectronic, sensing, and other applications. In this study, we demonstrate a facile method to fabricate ultrathin (∼10 nm), Ti3C2Tx MXene films by an interfacial assembly technique. The self-assembling behavior of MXene flakes resulted in films with a high stacking order and strong plane-to-plane adherence, where optimal films of 10 nm thickness displayed a low sheet resistance of 310 Ω/□. By using surface tension, films were transferred onto various types of planar and curved substrates. Moreover, multiple films were consecutively transferred onto substrates from a single batch of solution, showing the efficient use of the material. When the films were utilized as gas sensing channels, a high signal-to-noise ratio, up to 320, was observed, where the gas response of films assembled from small MXene flakes was 10 times larger than that from large flakes. This work provides a facile and efficient method to allow MXenes to be further exploited for thin-film applications.

16.
Nat Commun ; 10(1): 522, 2019 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-30705273

RESUMEN

MXenes are an emerging family of highly-conductive 2D materials which have demonstrated state-of-the-art performance in electromagnetic interference shielding, chemical sensing, and energy storage. To further improve performance, there is a need to increase MXenes' electronic conductivity. Tailoring the MXene surface chemistry could achieve this goal, as density functional theory predicts that surface terminations strongly influence MXenes' Fermi level density of states and thereby MXenes' electronic conductivity. Here, we directly correlate MXene surface de-functionalization with increased electronic conductivity through in situ vacuum annealing, electrical biasing, and spectroscopic analysis within the transmission electron microscope. Furthermore, we show that intercalation can induce transitions between metallic and semiconductor-like transport (transitions from a positive to negative temperature-dependence of resistance) through inter-flake effects. These findings lay the groundwork for intercalation- and termination-engineered MXenes, which promise improved electronic conductivity and could lead to the realization of semiconducting, magnetic, and topologically insulating MXenes.

17.
Nanoscale ; 11(2): 622-630, 2019 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-30560967

RESUMEN

We report on the high temperature thin film growth of BaTiO3 on Ti3C2Tx MXene flakes using van der Waals epitaxy on a degradable template layer. MXene was deposited on amorphous and crystalline substrates by spray- and dip-coating techniques, while the growth of BaTiO3 at 700 °C was accomplished using pulsed laser deposition in an oxygen rich environment. We demonstrate that the MXene flakes act as a temporary seed layer, which promotes highly oriented BaTiO3 growth along the (111) direction independent of the underlying substrate. The lattice parameters of the BaTiO3 films are close to the bulk value suggesting that the BaTiO3 films remains unstrained, as expected for van der Waals epitaxy. The initial size of the MXene flakes has an impact on the orientation of the BaTiO3 films with larger flake sizes promoting a higher fraction of the polycrystalline film to grow along the (111) direction. The deposited BaTiO3 film adopts the same morphology as the original flakes and piezoresponse force microscopy shows a robust ferroelectric behavior for individual grains. Transmission electron microscopy results indicate that the Ti3C2Tx MXene fully decomposes during the BaTiO3 deposition and the surplus Ti atoms are readily incorporated into the BaTiO3 film. Electrical measurements show a similar dielectric constant as a BaTiO3 film grown without the MXene seed layer. The demonstrated process has the potential to overcome the longstanding issue of integrating highly oriented complex oxide thin films directly on any desired substrate.

18.
Adv Mater ; 30(52): e1804779, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30450752

RESUMEN

2D transition metal carbides, carbonitrides, and nitrides, known as MXenes, are a rapidly growing family of 2D materials with close to 30 members experimentally synthesized, and dozens more studied theoretically. They exhibit outstanding electronic, optical, mechanical, and thermal properties with versatile transition metal and surface chemistries. They have shown promise in many applications, such as energy storage, electromagnetic interference shielding, transparent electrodes, sensors, catalysis, photothermal therapy, etc. The high electronic conductivity and wide range of optical absorption properties of MXenes are the key to their success in the aforementioned applications. However, relatively little is currently known about their fundamental electronic and optical properties, limiting their use to their full potential. Here, MXenes' electronic and optical properties from both theoretical and experimental perspectives, as well as applications related to those properties, are discussed, providing a guide for researchers who are exploring those properties of MXenes.

19.
Langmuir ; 34(38): 11325-11334, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30169960

RESUMEN

Two-dimensional heterostructures, such as Fe2O3/MXene nanoparticles, can be attractive anode materials for lithium-ion batteries (LIBs) due to the synergy between high lithium-storage capacity of Fe2O3 and stable cyclability and high conductivity provided by MXene. Here, we improved the storage performance of Ti3C2T x (MXene)/Fe2O3 nanocomposite by confining Fe2O3 nanoparticles into Ti3C2T x nanosheets with different mixing ratios using a facile and scalable dry ball-milling process. Composites of Ti3C2T x-25 wt % Fe2O3 and Ti3C2T x-50 wt % Fe2O3 synthesized by ball-milling resulted in uniform distribution of Fe2O3 nanoparticles on Ti3C2T x nanosheets with minimum oxidation of MXene as compared to composites prepared by hydrothermal or wet sonication. Moreover, the composites demonstrated minimum restacking of the nanosheets and higher specific surface area. Among all studied composites, the Ti3C2T x-50 wt % Fe2O3 showed the highest reversible specific capacity of ∼270 mAh g-1 at 1C (∼203 mAh g-1 based on the composite) and rate performance of 100 mAh g-1 at 10C. This can open the door for synthesizing stable and high-performance MXene/transition metal oxide composites with significantly enhanced electrochemical performance for LIB applications.

20.
Nanoscale ; 9(45): 17722-17730, 2017 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-29134998

RESUMEN

MXenes are a rapidly growing class of 2D transition metal carbides and nitrides, finding applications in fields ranging from energy storage to electromagnetic interference shielding and transparent conductive coatings. However, while more than 20 carbide MXenes have already been synthesized, Ti4N3 and Ti2N are the only nitride MXenes reported so far. Here by ammoniation of Mo2CTx and V2CTx MXenes at 600 °C, we report on their transformation to 2D metal nitrides. Carbon atoms in the precursor MXenes are replaced with N atoms, resulting from the decomposition of ammonia molecules. The crystal structures of the resulting Mo2N and V2N were determined with transmission electron microscopy and X-ray pair distribution function analysis. Our results indicate that Mo2N retains the MXene structure and V2C transforms to a mixed layered structure of trigonal V2N and cubic VN. Temperature-dependent resistivity measurements of the nitrides reveal that they exhibit metallic conductivity, as opposed to semiconductor-like behavior of their parent carbides. As important, room-temperature electrical conductivity values of Mo2N and V2N are three and one order of magnitude larger than those of the Mo2CTx and V2CTx precursors, respectively. This study shows how gas treatment synthesis such as ammoniation can transform carbide MXenes into 2D nitrides with higher electrical conductivities and metallic behavior, opening a new avenue in 2D materials synthesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...