Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Infect Drug Resist ; 16: 5869-5885, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37700802

RESUMEN

Purpose: Severe pneumonia causes the highest mortality rate in immunocompromised patients. This study aimed to investigate the pathogen diagnostic efficacy of metagenomic next-generation sequencing (mNGS) using sputum sample in patients with pneumonia according to patients' disease severity and immune conditions. Patients and Methods: A total of 180 patients suffering from pneumonia were recruited, and sputum samples were collected in duplicate for pathogen detection by both conventional microbiological tests (CMT) and mNGS. Then, the performance of pathogen identification was examined between two methods, according to disease severity and patients' immune status. Results: In comparison to CMT, mNGS had higher positivity rates in all patients with pneumonia (85.0% vs 62.2%, P=9.445e-07). The most commonly detected microorganism in sputum of pneumonia patients was Acinetobacter baumannii (42/180, 23.3%) in bacterum level, Candida albicans in fungus level (44/180, 24.4%), and Human herpesvirus 1 (39/180, 27.5%) in virus level. However, for mNGS results, Candida albicans in 34.9% of positive patients, and Human herpesvirus 1 in 7.7% of positive cases were confirmed as pathogens causing pneumonia. Acinetobacter baumannii detected by mNGS in 75% of positive patients was diagnosed as pathogen of pneumonia. The microorganism profile of sputum mNGS differed according to disease severity and immune status of patients. Pneumocystis jirovecii was more likely to infect immunocompromised patients (P=0.002). Pseudomonas aeruginosa (14.8% vs 0.0%, P=0.008) and Human herpesvirus 1 (26.1% vs 5.3%, P=0.004) had higher infection rate in patients with severe pneumonia compared with non-severe cases. mNGS had overwhelming advantages over CMT in detecting a lot of microorganisms including Streptococcus pneumoniae, Enterococcus faecium, Pneumocystis jirovecii, and majority of viruses. Conclusion: mNGS is a complementary tool of CMT for detecting suspected pathogens for patients with lower respiratory infections. The interpretation of opportunistic pathogens identified by mNGS is challenging, and needs comprehensive consideration of sequencing data and clinical factors.

2.
J Oral Rehabil ; 47(12): 1557-1565, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32623775

RESUMEN

BACKGROUND: Dental stem cell transplantation has become a new method for tooth tissue regeneration. However, its molecular mechanism of the dentinogenic differentiation is still unclear, limited its application. Our previous studies found that insulin-like growth factor-binding protein 5 (IGFBP5) can promote the osteogenic differentiation of periodontal ligament stem cells and the regeneration of periodontal tissues. This study aims to clarify the effect and mechanism of IGFBP5 on the dentinogenesis of dental pulp stem cells (DPSCs). OBJECTIVE AND METHODS: Lentiviral IGFBP5 shRNA was used to knock-down of IGFBP5. And recombinant human IGFBP5 protein (rhIGFBP5) was used to treat DPSCs. Alkaline phosphatase (ALP) staining, Alizarin red staining, quantitative calcium analysis, real-time RT-PCR and Western Blot were used to detect dentinogenic differentiation markers and related signalling pathways. Transplantation in nude mice was used to detect the dentin regeneration in vivo. RESULTS: Depletion of IGFBP5 inhibited ALP activity and the mineralisation and reduced the expressions of osteo/dentinogenic differentiation markers BSP, DMP-1 and DSPP in DPSCs. 0.05 ng/mL rhIGFBP5 promoted ALP activity, the mineralisation and the expressions of BSP, DMP-1 and DSPP in DPSCs. In addition, 0.05 ng/mL rhIGFBP5 could promote DPSC-mediated dentin-like tissues formation in vivo. Western blot results showed that IGFBP5 activated JNK and Erk signalling pathways in DPSCs. Furthermore, inhibition of JNK pathway by SP600125, the expression of p-JNK and p-Erk was reduced, while inhibition of Erk pathway by PD98059, only p-Erk expression was decreased. CONCLUSIONS: Our results demonstrated that IGFBP5 could promote the dentinogenic differentiation and dentinogenesis potential of DPSCs via JNK and ErK signalling pathways.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Osteogénesis , Animales , Diferenciación Celular , Células Cultivadas , Pulpa Dental , Dentinogénesis , Humanos , Ratones , Ratones Desnudos , Células Madre
3.
Curr Microbiol ; 71(1): 16-23, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25847580

RESUMEN

The duodenal ulcer promoting gene (dupA), located in the plasticity region of Helicobacter pylori (H. pylori), is predicted to form a type IV secretory system (T4SS) with vir genes around dupA. In the study, we investigated the association between the dupA cluster status and the virulence of H. pylori in a littoral region of Northeast China. Two hundred and sixty-two H. pylori strains isolated from the chronic gastritis were examined to evaluate the dupA cluster status, cag PAI genes and vacA genotype using PCR and Western blot. Histopathologic evaluations of biopsy specimens were performed to analysis the association between the dupA cluster and the inflammatory response. IL-8 productions in gastric mucosa and from GES-1 cells co-cultured with H. pylori were measured, respectively, to analysis the association between the dupA cluster status and IL-8 production. We found that gastric mucosal inflammatory cell infiltration was significantly higher in patients with dupA-positive H. pylori, including H. pylori with complete dupA cluster (2.71 ± 0.79) and incomplete dupA cluster (2.09 ± 0.61) than in patients with dupA-negative strain (1.73 ± 0.60, p < 0.01), whereas no significant difference in the gastric mucosal atrophy was found according to the status of dupA cluster. Gastric mucosal IL-8 levels were higher in the complete dupA cluster group than in other groups (p < 0.01), and IL-8 production from GES-1 cells was also significantly higher in strains with a complete dupA cluster (1527.9 ± 180.0 pg/ml) than in those with an incomplete dupA cluster (1229.4 ± 75.3 pg/ml, p < 0.01) or those with dupA negative (1201.9 ± 92.3 pg/ml, p < 0.01). In conclusion, the complete dupA cluster in H. pylori is associated with inflammatory cell infiltration and IL-8 secretion, and H. pylori strain with a complete dupA cluster seems to be more virulent than other strains with the incomplete dupA cluster or dupA negative.


Asunto(s)
Helicobacter pylori/patogenicidad , Familia de Multigenes , Factores de Virulencia/metabolismo , Antígenos Bacterianos/análisis , Antígenos Bacterianos/genética , Proteínas Bacterianas/análisis , Proteínas Bacterianas/genética , Biopsia , Western Blotting , Línea Celular , China , Técnicas de Cocultivo , Citocinas/metabolismo , Células Epiteliales/inmunología , Células Epiteliales/microbiología , Mucosa Gástrica/patología , Gastritis/microbiología , Infecciones por Helicobacter/microbiología , Helicobacter pylori/genética , Helicobacter pylori/aislamiento & purificación , Histocitoquímica , Humanos , Reacción en Cadena de la Polimerasa , Virulencia , Factores de Virulencia/análisis , Factores de Virulencia/deficiencia , Factores de Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA