Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 342
1.
Plant Signal Behav ; 19(1): 2357367, 2024 Dec 31.
Article En | MEDLINE | ID: mdl-38775124

Elevated temperatures critically impact crop growth, development, and yield, with photosynthesis being the most temperature-sensitive physiological process in plants. This study focused on assessing the photosynthetic response and genetic adaptation of two different heat-resistant jujube varieties 'Junzao' (J) and 'Fucuimi' (F), to high-temperature stress (42°C Day/30°C Night). Comparative analyses of leaf photosynthetic indices, microstructural changes, and transcriptome sequencing were conducted. Results indicated superior high-temperature adaptability in F, evidenced by alterations in leaf stomatal behavior - particularly in J, where defense cells exhibited significant water loss, shrinkage, and reduced stomatal opening, alongside a marked increase in stomatal density. Through transcriptome sequencing 13,884 differentially expressed genes (DEGs) were identified, significantly enriched in pathways related to plant-pathogen interactions, amino acid biosynthesis, starch and sucrose metabolism, and carbohydrate metabolism. Key findings include the identification of photosynthetic pathway related DEGs and HSFA1s as central regulators of thermal morphogenesis and heat stress response. Revealing their upregulation in F and downregulation in J. The results indicate that these genes play a crucial role in improving heat tolerance in F. This study unveils critical photosynthetic genes involved in heat stress, providing a theoretical foundation for comprehending the molecular mechanisms underlying jujube heat tolerance.


Gene Expression Regulation, Plant , Photosynthesis , Ziziphus , Ziziphus/genetics , Ziziphus/physiology , Photosynthesis/genetics , Heat-Shock Response/genetics , Hot Temperature , Plant Leaves/genetics , Plant Leaves/metabolism , Transcriptome/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Stomata/physiology , Plant Stomata/genetics
2.
Gut Microbes ; 16(1): 2351532, 2024.
Article En | MEDLINE | ID: mdl-38727248

Emerging evidence indicates that alteration of gut microbiota plays an important role in chronic kidney disease (CKD)-related vascular calcification (VC). We aimed to investigate the specific gut microbiota and the underlying mechanism involved in CKD-VC. We identified an increased abundance of Prevotella copri (P. copri) in the feces of CKD rats (induced by using 5/6 nephrectomy followed by a high calcium and phosphate diet) with aortic calcification via amplicon sequencing of 16S rRNA genes. In patients with CKD, we further confirmed a positive correlation between abundance of P. copri and aortic calcification scores. Moreover, oral administration of live P. copri aggravated CKD-related VC and osteogenic differentiation of vascular smooth muscle cells in vivo, accompanied by intestinal destruction, enhanced expression of Toll-like receptor-4 (TLR4), and elevated lipopolysaccharide (LPS) levels. In vitro and ex vivo experiments consistently demonstrated that P. copri-derived LPS (Pc-LPS) accelerated high phosphate-induced VC and VSMC osteogenic differentiation. Mechanistically, Pc-LPS bound to TLR4, then activated the nuclear factor κB (NF-κB) and nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome signals during VC. Inhibition of NF-κB reduced NLRP3 inflammasome and attenuated Pc-LPS-induced VSMC calcification. Our study clarifies a novel role of P. copri in CKD-related VC, by the mechanisms involving increased inflammation-regulating metabolites including Pc-LPS, and activation of the NF-κB/NLRP3 signaling pathway. These findings highlight P. copri and its-derived LPS as potential therapeutic targets for VC in CKD.


Gastrointestinal Microbiome , Lipopolysaccharides , NF-kappa B , Prevotella , Renal Insufficiency, Chronic , Signal Transduction , Toll-Like Receptor 4 , Vascular Calcification , Animals , Vascular Calcification/metabolism , Vascular Calcification/pathology , NF-kappa B/metabolism , Lipopolysaccharides/metabolism , Rats , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/microbiology , Renal Insufficiency, Chronic/chemically induced , Renal Insufficiency, Chronic/pathology , Humans , Male , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Prevotella/metabolism , Rats, Sprague-Dawley , Myocytes, Smooth Muscle/metabolism , Osteogenesis/drug effects , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Feces/microbiology , Inflammasomes/metabolism
3.
Plant Physiol Biochem ; 211: 108665, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38735155

Budding mutations are known to cause metabolic changes in new jujube varieties; however, the mechanisms underlying these changes are still unclear. Here, we performed muti-omics analysis to decipher the detailed metabolic landscape of "Saimisu 1" (S1) and its budding mutation line "Saimisu 2" (S2) at all fruit stages. We found that the genes involved in the biosyntheses of flavonoids, phenylpropanoids, and amino acids were upregulated in S2 fruits at all stages, especially PAL and DFR, resulting in increased accumulation of related compounds in S2 mature fruits. Further co-expression regulatory network analysis showed that the transcription factors MYB41 and bHLH93 potentially regulated the expression of PAL and DFR, respectively, by directly binding to their promoters. Moreover, the overexpression of MYB41 or bHLH93 induced their expression levels to redirect the flux of the flavonoid biosynthetic pathway, eventually leading to high levels of related compounds in S2 fruits. Overall, this study revealed the metabolic variations between S1 and S2 and contributed to the understanding of the mechanisms underlying budding mutation-mediated metabolic variations in plants, eventually providing the basis for breeding excellent jujube varieties using budding mutation lines.

4.
Gut ; 2024 May 22.
Article En | MEDLINE | ID: mdl-38777572

OBJECTIVE: Puerarin (PU) is a natural compound that exhibits limited oral bioavailability but has shown promise in the treatment of atherosclerosis (AS). However, the precise mechanisms underlying its therapeutic effects remain incompletely understood. This study aimed to investigate the effects of PU and its mechanisms in mitigating AS in both mice and humans. DESIGN: The impact of PU on AS was examined in ApoE -/- mice fed a high-fat diet (HFD) and in human patients with carotid artery plaque. To explore the causal link between PU-associated gut microbiota and AS, faecal microbiota transplantation (FMT) and mono-colonisation of mice with Prevotella copri (P. copri) were employed. RESULTS: PU alleviated AS by modulating the gut microbiota, as evidenced by alterations in gut microbiota composition and the amelioration of AS following FMT from PU-treated mice into ApoE-/- mice fed HFD. Specifically, PU reduced the abundance of P. copri, which exacerbated AS by producing trimethylamine (TMA). Prolonged mono-colonisation of P. copri undermines the beneficial effects of PU on AS. In clinical, the plaque scores of AS patients were positively correlated with the abundance of P. copri and plasma trimethylamine-N-oxide (TMAO) levels. A 1-week oral intervention with PU effectively decreased P. copri levels and reduced TMAO concentrations in patients with carotid artery plaque. CONCLUSION: PU may provide therapeutic benefits in combating AS by targeting P. copri and its production of TMA. TRIAL REGISTRATION NUMBER: ChiCTR1900022488.

5.
Hortic Res ; 11(5): uhae071, 2024 May.
Article En | MEDLINE | ID: mdl-38725458

Chinese jujube (Ziziphus jujuba Mill.) is one of the most important deciduous tree fruits in China, with substantial economic and nutritional value. Jujube was domesticated from its wild progenitor, wild jujube (Z. jujuba var. spinosa), and both have high medicinal value. Here we report the 767.81- and 759.24-Mb haplotype-resolved assemblies of a dry-eating 'Junzao' jujube (JZ) and a wild jujube accession (SZ), using a combination of multiple sequencing strategies. Each assembly yielded two complete haplotype-resolved genomes at the telomere-to-telomere (T2T) level, and ~81.60 and 69.07 Mb of structural variations were found between the two haplotypes within JZ and SZ, respectively. Comparative genomic analysis revealed a large inversion on each of chromosomes 3 and 4 between JZ and SZ, and numerous genes were affected by structural variations, some of which were associated with starch and sucrose metabolism. A large-scale population analysis of 672 accessions revealed that wild jujube originated from the lower reaches of the Yellow River and was initially domesticated at local sites. It spread widely and was then independently domesticated at the Shanxi-Shaanxi Gorge of the middle Yellow River. In addition, we identified some new selection signals regions on genomes, which are involved in the tissue development, pollination, and other aspects of jujube tree morphology and fertilization domestication. In conclusion, our study provides high-quality reference genomes of jujube and wild jujube and new insights into the domestication history of jujube.

6.
Neuroreport ; 35(9): 577-583, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38687887

Pyroptosis, a form of programmed cell death, drives inflammation in the context of cerebral ischemia/reperfusion. The molecular mechanism of pyroptosis underlying ischemia/reperfusion, however, is not fully understood. The transient middle cerebral artery occlusion was applied to wild-type and caspase-1 knockout mice. 2,3,5-Triphenyltetrazolium chloride-staining and immunohistochemistry were used to identify the ischemic region, and western blot and immunofluorescence for the examination of neuronal pyroptosis. The expression of inflammatory factors and the behavioral function assessments were further conducted to examine the effects of caspase-1 knockout on protection against ischemia/reperfusion injury. Ischemia/reperfusion injury increased pyroptosis-related signals represented by the overexpression of pyroptosis-related proteins including caspase-1 and gasdermin D (GSDMD). Meanwhile, the number of GSDMD positive neurons increased in penumbra by immunofluorescence staining. Compared with wild-type mice, those with caspase-1 knockout exhibited decreased levels of pyroptosis-related proteins following ischemia/reperfusion. Furthermore, ischemia/reperfusion attack-induced brain infarction, cerebral edema, inflammatory factors, and neurological outcomes were partially improved in caspase-1 knockout mice. The data indicate that pyroptosis participates in ischemia/reperfusion induced-damage, and the caspase-1 might be involved, it provides some new insights into the molecular mechanism of ischemia.


Caspase 1 , Infarction, Middle Cerebral Artery , Mice, Knockout , Pyroptosis , Reperfusion Injury , Animals , Pyroptosis/physiology , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Caspase 1/metabolism , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/pathology , Mice , Disease Models, Animal , Neurons/metabolism , Neurons/pathology , Mice, Inbred C57BL , Male , Brain Ischemia/metabolism , Brain Ischemia/pathology
7.
J Neurol ; 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38656620

OBJECTIVE: To describe the frequency of neuropsychiatric complications among hospitalized patients with coronavirus disease 2019 (COVID-19) and their association with pre-existing comorbidities and clinical outcomes. METHODS: We retrospectively identified all patients hospitalized with COVID-19 within a large multicenter New York City health system between March 15, 2020 and May 17, 2021 and randomly selected a representative cohort for detailed chart review. Clinical data, including the occurrence of neuropsychiatric complications (categorized as either altered mental status [AMS] or other neuropsychiatric complications) and in-hospital mortality, were extracted using an electronic medical record database and individual chart review. Associations between neuropsychiatric complications, comorbidities, laboratory findings, and in-hospital mortality were assessed using multivariate logistic regression. RESULTS: Our study cohort consisted of 974 patients, the majority were admitted during the first wave of the pandemic. Patients were treated with anticoagulation (88.4%), glucocorticoids (24.8%), and remdesivir (10.5%); 18.6% experienced severe COVID-19 pneumonia (evidenced by ventilator requirement). Neuropsychiatric complications occurred in 58.8% of patients; 39.8% experienced AMS; and 19.0% experienced at least one other complication (seizures in 1.4%, ischemic stroke in 1.6%, hemorrhagic stroke in 1.0%) or symptom (headache in 11.4%, anxiety in 6.8%, ataxia in 6.3%). Higher odds of mortality, which occurred in 22.0%, were associated with AMS, ventilator support, increasing age, and higher serum inflammatory marker levels. Anticoagulant therapy was associated with lower odds of mortality and AMS. CONCLUSION: Neuropsychiatric complications of COVID-19, especially AMS, were common, varied, and associated with in-hospital mortality in a diverse multicenter cohort at an epicenter of the COVID-19 pandemic.

8.
Molecules ; 29(6)2024 Mar 14.
Article En | MEDLINE | ID: mdl-38542919

To improve the mess-specific activity of Co supported on zeolite catalysts in Fischer-Tropsch (FT) synthesis, the Co-MCM-22 catalyst was prepared by simply grinding the MCM-22 with nanosized Co3O4 prefabricated by the thermal decomposition of the Co(II)-glycine complex. It is found that this novel strategy is effective for improving the mess-specific activity of Co catalysts in FT synthesis compared to the impregnation method. Moreover, the ion exchange and calcination sequence of MCM-22 has a significant influence on the dispersion, particle size distribution, and reduction degree of Co. The Co-MCM-22 prepared by the physical grinding of prefabricated Co3O4 and H+-type MCM-22 without a further calcination process exhibits a moderate interaction between Co3O4 and MCM-22, which results in the higher reduction degree, higher dispersion, and higher mess-specific activity of Co. Thus, the newly developed method is more controllable and promising for the synthesis of metal-supported catalysts.

9.
Int J Mol Sci ; 25(5)2024 Feb 29.
Article En | MEDLINE | ID: mdl-38474080

Fleshy fruit ripening is a unique biological process that involves dramatic changes in a diverse array of cellular metabolisms. The regulation of these metabolisms is essentially mediated by cellular signal transduction of internal (e.g., hormones) and external cues (i.e., environmental stimuli). Mitogen-activated protein kinase (MAPK) signaling pathways play crucial roles in a diverse array of biological processes, such as plant growth, development and biotic/abiotic responses. Accumulating evidence suggests that MAPK signaling pathways are also implicated in fruit ripening and quality formation. However, while MAPK signaling has been extensively reviewed in Arabidopsis and some crop plants, the comprehensive picture of how MAPK signaling regulates fruit ripening and quality formation remains unclear. In this review, we summarize and discuss research in this area. We first summarize recent studies on the expression patterns of related kinase members in relation to fruit development and ripening and then summarize and discuss the crucial evidence of the involvement of MAPK signaling in fruit ripening and quality formation. Finally, we propose several perspectives, highlighting the research matters and questions that should be afforded particular attention in future studies.


Fruit , Plant Development , Fruit/metabolism , Signal Transduction , MAP Kinase Signaling System , Mitogen-Activated Protein Kinases/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics
10.
Heart Rhythm ; 2024 Feb 08.
Article En | MEDLINE | ID: mdl-38336194

BACKGROUND: Emerging evidence has linked daytime napping with the risk of cardiovascular events. Cardiac arrhythmias are considered an early clinical stage for cardiovascular diseases. However, whether napping frequency is associated with incident arrhythmias remains unknown. OBJECTIVE: This study aimed to prospectively investigate the association between napping frequency and cardiac arrhythmias. METHODS: Daytime napping frequency was self-reported in response to touchscreen questionnaires. The primary outcomes were incident arrhythmias including atrial fibrillation/flutter (AF/Af), ventricular arrhythmia, and bradyarrhythmia. Cox regression analysis was conducted on the basis of 491,117 participants free of cardiac arrhythmias from the UK Biobank. The 2-sample mendelian randomization (MR) and 1-sample MR were used to ensure a causal effect of genetically predicted daytime napping on the risk of arrhythmias. RESULTS: During a median follow-up of 11.91 years, 28,801 incident AF/Af cases, 4132 incident ventricular arrhythmias, and 11,616 incident bradyarrhythmias were documented. Compared with never/rarely napping, usually napping was significantly associated with higher risks of AF/Af (hazard ratio, 1.141; 95% CI, 1.083-1.203) and bradyarrhythmia (hazard ratio, 1.138; 95% CI, 1.049-1.235) but not ventricular arrhythmia after adjustment for various covariates. The 2-sample MR and 1-sample MR analysis showed that increased daytime napping frequency was likely to be a potential causal risk factor for AF/Af in FinnGen (odds ratio, 1.626; 95% CI, 1.061-2.943) and bradyarrhythmia in the UK Biobank (odds ratio, 1.005; 95% CI, 1.002-1.008). CONCLUSION: The results of this study add to the burgeoning evidence of an association between daytime napping frequency and an increased risk of cardiac arrhythmias including AF/Af, ventricular arrhythmia, and bradyarrhythmia.

11.
Sci Rep ; 14(1): 4896, 2024 02 28.
Article En | MEDLINE | ID: mdl-38418830

This work prepared and investigated the impact of carboxymethyl chitosan nanoparticles (MC-NPs) on the proliferative capability of keloid fibroblasts (KFBs) while analyzing the mechanistic roles of miR-214 and adenosine A2A receptor (A2AR) in fibroblasts within hypertrophic scars. MC-NPs were synthesized through ion cross-linking, were characterized using transmission electron microscopy (TEM) and laser particle size scattering. The influence of MC-NPs on the proliferation capacity of KFBs was assessed using the MTT method. Changes in the expression levels of miR-214 and A2AR in KFBs, normal skin fibroblasts (NFBs), hypertrophic scar tissue, and normal skin tissue were analyzed. KFBs were categorized into anti-miR-214, anti-miR-NC, miR-214 mimics, miR-NC, si-A2AR, si-con, anti-miR-214+ si-con, and anti-miR-214+ si-A2AR groups. Bioinformatics target prediction was conducted to explore the interaction between miR-214 and A2AR. Real-time quantitative PCR and immunoblotting (WB) were employed to detect the expression levels of miR-214, A2AR, apoptotic protein Bax, and TGF-ß in different cells. Cell counting kit-8 (CCK8) and flow cytometry were employed to assess cell proliferation activity and apoptosis. The results indicated that MC-NPs exhibited spherical particles with an average diameter of 236.47 ± 4.98 nm. The cell OD value in the MC-NPs group was lower than that in KFBs (P < 0.05). The mRNA levels of miR-214 in KFBs and hypertrophic scar tissue were lower than those in NFBs and normal tissue (P < 0.001), while the mRNA and protein levels of A2AR were significantly elevated (P < 0.05). Compared to the control group and anti-miR-NC, the anti-miR-214 group showed significantly increased cell OD values and Bcl-2 protein expression (P < 0.001), decreased levels of apoptotic gene Bax protein, TGF-ß gene mRNA, and protein expression (P < 0.001). Continuous complementary binding sites were identified between miR-214 and A2AR. Compared to the control group, the si-A2AR group exhibited a significant decrease in A2AR gene mRNA and protein expression levels (P < 0.001), reduced cell viability (P < 0.001), increased apoptosis rate (P < 0.001), and a significant elevation in TGF-ß protein expression (P < 0.001). miR-214 targetedly regulated the expression of A2AR, inducing changes in TGF-ß content, promoting the proliferation of keloid fibroblasts, and inhibiting cell apoptosis.


Chitosan , Cicatrix, Hypertrophic , Keloid , MicroRNAs , Humans , Keloid/pathology , Cicatrix, Hypertrophic/metabolism , Receptor, Adenosine A2A/genetics , Receptor, Adenosine A2A/metabolism , Antagomirs/metabolism , Chitosan/pharmacology , Chitosan/metabolism , Cell Proliferation , Transforming Growth Factor beta/metabolism , Apoptosis , MicroRNAs/metabolism , Fibroblasts/metabolism , RNA, Messenger/metabolism
12.
HLA ; 103(2): e15395, 2024 Feb.
Article En | MEDLINE | ID: mdl-38372582

The HLA-DRB1*16:76 allele differs from HLA-DRB1*16:02:01 by one nucleotide substitution (A > G) at position 37 in exon 1.


HLA-DRB1 Chains , Humans , HLA-DRB1 Chains/genetics , Base Sequence , Alleles , Exons/genetics , China
13.
Cardiovasc Diabetol ; 23(1): 20, 2024 01 09.
Article En | MEDLINE | ID: mdl-38195550

BACKGROUND: Remnant cholesterol (RC) is implicated in the risk of cardiovascular disease. However, comprehensive population-based studies elucidating its association with aortic valve calcium (AVC) progression are limited, rendering its precise role in AVC ambiguous. METHODS: From the Multi-Ethnic Study of Atherosclerosis database, we included 5597 individuals (61.8 ± 10.1 years and 47.5% men) without atherosclerotic cardiovascular disease at baseline for analysis. RC was calculated as total cholesterol minus high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C), as estimated by the Martin/Hopkins equation. Using the adjusted Cox regression analyses, we examined the relationships between RC levels and AVC progression. Furthermore, we conducted discordance analyses to evaluate the relative AVC risk in RC versus LDL-C discordant/concordant groups. RESULTS: During a median follow-up of 2.4 ± 0.9 years, 568 (10.1%) participants exhibited AVC progression. After adjusting for traditional cardiovascular risk factors, the HRs (95% CIs) for AVC progression comparing the second, third, and fourth quartiles of RC levels with the first quartile were 1.195 (0.925-1.545), 1.322 (1.028-1.701) and 1.546 (1.188-2.012), respectively. Notably, the discordant high RC/low LDL-C group demonstrated a significantly elevated risk of AVC progression compared to the concordant low RC/LDL-C group based on their medians (HR, 1.528 [95% CI 1.201-1.943]). This pattern persisted when clinical LDL-C threshold was set at 100 and 130 mg/dL. The association was consistently observed across various sensitivity analyses. CONCLUSIONS: In atherosclerotic cardiovascular disease-free individuals, elevated RC is identified as a residual risk for AVC progression, independent of traditional cardiovascular risk factors. The causal relationship of RC to AVC and the potential for targeted RC reduction in primary prevention require deeper exploration.


Atherosclerosis , Cardiovascular Diseases , Hypercholesterolemia , Male , Humans , Female , Calcium , Cholesterol, LDL , Aortic Valve/diagnostic imaging , Cholesterol , Atherosclerosis/diagnosis , Atherosclerosis/epidemiology
14.
Adv Sci (Weinh) ; 11(13): e2306364, 2024 Apr.
Article En | MEDLINE | ID: mdl-38286670

γδ T cells are evolutionarily conserved T lymphocytes that manifest unique antitumor efficacy independent of tumor mutation burden (TMB) and conventional human leukocyte antigen (HLA) recognition. However, the dynamic changes in their T cell receptor (TCR) repertoire during cancer progression and treatment courses remain unclear. Here, a comprehensive characterization of γδTCR repertoires are performed in thyroid cancers with divergent differentiation states through cross-sectional studies. The findings revealed a significant correlation between the differentiation states and TCR repertoire diversity. Notably, highly expanded clones are prominently enriched in γδ T cell compartment of dedifferentiated patients. Moreover, by longitudinal investigations of the γδ T cell response to various antitumor therapies, it is found that the emergence and expansion of the Vδ2neg subset may be potentially associated with favorable clinical outcomes after post-radiotherapeutic immunotherapy. These findings are further validated at single-cell resolution in both advanced thyroid cancer patients and a murine model, underlining the importance of further investigations into the role of γδTCR in cancer immunity and therapeutic strategies.


Intraepithelial Lymphocytes , Thyroid Neoplasms , Humans , Mice , Animals , Receptors, Antigen, T-Cell, gamma-delta/genetics , Cross-Sectional Studies , Immunotherapy , Thyroid Neoplasms/therapy
15.
HLA ; 103(1): e15296, 2024 Jan.
Article En | MEDLINE | ID: mdl-38192173

The HLA-A*11:01:124 allele differs from HLA-A*11:01:01 by one nucleotide substitution, (C > T) position 459 in exon 3.


HLA-A Antigens , Humans , Alleles , China , Exons/genetics , HLA-A Antigens/genetics , East Asian People
16.
Talanta ; 270: 125538, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38086223

A combination of SiO2@AuNPs@PDA molecularly imprinted and surface-assisted laser desorption/ionization-time-of-flight mass spectrometry (SALDI-TOF MS) was devised as a method for highly specific and ultrasensitive detection of two biogenic amines-histamine (HIS) and tryptamine (TRP)-in real samples. In this strategy, AuNPs modified amino-abundant silica nanospheres (SiO2@AuNPs). The prepared SiO2@AuNPs were used as a substrate to synthesize a molecularly imprinted polymer (MIP) through in situ dopamine self-polymerization with HIS and TRP as the template molecules (SiO2@AuNP@PDA-MIP). The as-prepared MIP structure, properties, and target-analyte identification conditions were characterized and optimized and it was used as the matrix for MS. Compared to the case of nonimprinted materials, the imprinting function endowed the matrix with a higher selectivity for capturing the target molecules. The enriched analytes were directly and rapidly identified using SALDI-TOF MS without elution. Meanwhile, the proposed method has low background interference, good reproducibility and stability, high salt tolerance, and satisfactory linearity (R2 > 0.99), and it enables ultrasensitive detection of HIS and TRP (limits of detection for HIS and TRP were 0.2 and 0.1 ng mL-1, respectively). Moreover, the proposed method was applied to analyze samples of real beer, sausage, and chicken, and the results agreed with those obtained via liquid chromatography-MS, suggesting that the method has excellent practical applications in the field of food safety.


Metal Nanoparticles , Molecular Imprinting , Molecularly Imprinted Polymers , Molecular Imprinting/methods , Histamine , Silicon Dioxide/chemistry , Gold/chemistry , Reproducibility of Results , Tryptamines
17.
Eur J Neurol ; 31(2): e16121, 2024 Feb.
Article En | MEDLINE | ID: mdl-37933887

BACKGROUND AND PURPOSE: Deep brain stimulation (DBS) has emerged as a promising treatment for movement disorders. This prospective study aims to evaluate the effects of bilateral subthalamic nucleus DBS (STN-DBS) on motor and non-motor symptoms in patients with primary Meige syndrome. METHODS: Thirty patients who underwent bilateral STN-DBS between April 2017 and June 2020 were included. Standardized and validated scales were utilized to assess the severity of dystonia, health-related quality of life, sleep, cognitive function and mental status at baseline and at 1 year and 3 years after neurostimulation. RESULTS: The Burke-Fahn-Marsden Dystonia Rating Scale movement scores showed a mean improvement of 63.0% and 66.8% at 1 year and 3 years, respectively, after neurostimulation. Similarly, the Burke-Fahn-Marsden Dystonia Rating Scale disability scores improved by 60.8% and 63.3% at the same time points. Postoperative quality of life demonstrated a significant and sustained improvement throughout the follow-up period. However, cognitive function, mental status, sleep quality and other neuropsychological functions did not change after 3 years of neurostimulation. Eight adverse events occurred in six patients, but no deaths or permanent sequelae were reported. CONCLUSIONS: Bilateral STN-DBS is a safe and effective alternative treatment for primary Meige syndrome, leading to improvements in motor function and quality of life. Nevertheless, it did not yield significant amelioration in cognitive, mental, sleep status and other neuropsychological functions after 3 years of neurostimulation.


Deep Brain Stimulation , Dystonia , Dystonic Disorders , Meige Syndrome , Subthalamic Nucleus , Humans , Meige Syndrome/therapy , Meige Syndrome/etiology , Dystonia/therapy , Quality of Life , Deep Brain Stimulation/adverse effects , Prospective Studies , Dystonic Disorders/therapy , Treatment Outcome , Globus Pallidus
18.
ACS Nano ; 18(1): 728-737, 2024 Jan 09.
Article En | MEDLINE | ID: mdl-38118144

A smart home sleep respiratory monitoring system based on a breath-responsive covalent organic framework (COF) was developed and utilized to monitor the sleep respiratory behavior of real sleep apnea patients in this work. The capacitance of the interdigital electrode chip coated with COFTPDA-TFPy exhibits thousands-level reversible responses to breath humidity gases, with subsecond response time and robustness against environmental humidity. A miniaturized printed circuit board, an open-face-mask-based respiratory sensor, and a smartphone app were constructed for the wearable wireless smart home sleep respiratory monitoring system. Leveraging the sensitive and rapid reversible response of COFs, the COF-based respiratory monitoring system can effectively record normal breath, rapid breath, and breath apnea, enabling over a thousand cycles of hour-level continuous monitoring during daily wear. Next, we took the groundbreaking step of advancing the humidity sensor to the clinical trial stage. In clinical experiments on real sleep apnea patients, the COF-based respiratory monitoring system successfully recorded hour-level sleep respiratory data and differentiated the breathing behavior characteristics and severity of sleep apnea patients and subjects with normal sleep function and primary snoring patients. This work successfully advanced humidity sensors into clinical research for real patients and demonstrated the enormous application potential of COF materials in clinical diagnosis.


Metal-Organic Frameworks , Sleep Apnea Syndromes , Humans , Sleep/physiology , Respiration , Sleep Apnea Syndromes/diagnosis , Monitoring, Physiologic
19.
Plant Physiol Biochem ; 205: 108196, 2023 Dec.
Article En | MEDLINE | ID: mdl-38000236

Aldehyde dehydrogenases (ALDHs) are NAD(P)-dependent enzymes that oxidize aliphatic and aromatic aldehydes. They play crucial roles in various biological processes and plant responses to stress. The impact of high temperatures on jujube quality and yield has been well documented. Nevertheless, the involvement of ALDHs in the response to heat stress remains poorly understood. This study aimed to identify ZjALDHs in the jujube genome (Ziziphus jujuba var. spinosa) and conducted in silico analyses. Phylogenetic analyses indicated that ALDHs in plants, including jujube, can be divided into ten families, and members from the same family share conserved gene and protein structures. Quantitative real-time PCR (qRT-PCR) and ß-glucuronidase (GUS) histochemical staining were used to analyze the expression patterns of ZjALDHs in response to elevated temperatures. We identified a ZjALDH (ZjALDH3F3) gene displaying a significant upregulation and down-regulation, respectively in heat-resistant (HR) and heat-sensitive (HS) jujube in response to heat treatments. Such specific responses are probably attributed to the different heat-responsive cis-elements of ZjALDH3F3 in HR and HS jujubes. ZjALDH3F3 over-expressed in tobacco increased heat tolerance, as evidenced by the reduced accumulation of reactive oxygen species (ROS) and elevated activity of antioxidant enzymes. The qRT-PCR results indicated that the expression of antioxidant enzymes, abscisic acid (ABA), and stress-responsive genes was enhanced in transgenic tobacco. This study sheds novel light on the function of ZjALDHs in heat resistance of jujube.


Ziziphus , Ziziphus/genetics , Ziziphus/metabolism , Phylogeny , Antioxidants/metabolism , Temperature , Genome, Plant , Gene Expression Regulation, Plant
20.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(9): 915-922, 2023.
Article Zh | MEDLINE | ID: mdl-37718396

OBJECTIVES: To identify risk factors associated with early-onset sepsis (EOS) in very preterm infants and develop a nomogram model for predicting the risk of EOS. METHODS: A retrospective analysis was conducted on 344 very preterm infants delivered at the First Affiliated Hospital of Zhengzhou University and admitted to the Department of Neonatology between January 2020 and December 2022. These infants were randomly divided into a training set (241 infants) and a validating set (103 infants) in a 7:3 ratio. The training set was further divided into two groups based on the presence or absence of EOS: EOS (n=64) and non-EOS (n=177). Multivariate logistic regression analysis was performed to identify risk factors for EOS in the very preterm infants. The nomogram model was developed using R language and validated using the validating set. The discriminative ability, calibration, and clinical utility of the model were assessed using receiver operating characteristic (ROC) curve analysis, calibration curve analysis, and decision curve analysis, respectively. RESULTS: The multivariate logistic regression analysis revealed that gestational age, need for tracheal intubation in the delivery room, meconium-stained amniotic fluid, serum albumin level on the first day of life, and chorioamnionitis were risk factors for EOS in very preterm infants (P<0.05). The area under the ROC curve for the training set was 0.925 (95%CI: 0.888-0.963), and that for the validating set was 0.796 (95%CI: 0.694-0.898), confirming the model's good discrimination. The Hosmer-Lemeshow goodness-of-fit test suggested that the model was well-fitting (P=0.621). The calibration curve analysis and decision curve analysis demonstrated that the model had high predictive efficacy and clinical applicability. CONCLUSIONS: Gestational age, need for tracheal intubation in the delivery room, meconium-stained amniotic fluid, serum albumin level on the first day of life, and chorioamnionitis are significantly associated with the development of EOS in very preterm infants.The nomogram model for predicting the risk of EOS in very preterm infants, constructed based on these factors, has high predictive efficacy and clinical applicability.

...