Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Chin J Integr Med ; 2024 Feb 22.
Article En | MEDLINE | ID: mdl-38386252

OBJECTIVE: To investigate the potential role of Tongxinluo (TXL) in attenuating myocardial fibrosis after myocardial ischemia-reperfusion injury (MIRI) in mice. METHODS: A MIRI mouse model was established by left anterior descending coronary artery ligation for 45 min. According to a random number table, 66 mice were randomly divided into 6 groups (n=11 per group): the sham group, the model group, the LY-294002 group, the TXL group, the TXL+LY-294002 group and the benazepril (BNPL) group. The day after modeling, TXL and BNPL were administered by gavage. Intraperitoneal injection of LY-294002 was performed twice a week for 4 consecutive weeks. Echocardiography was used to measure cardiac function in mice. Masson staining was used to evaluate the degree of myocardial fibrosis in mice. Qualitative and quantitative analysis of endothelial mesenchymal transition (EndMT) after MIRI was performed by immunohistochemistry, immunofluorescence staining and flow cytometry, respectively. The protein expressions of platelet endothelial cell adhesion molecule-1 (CD31), α-smoth muscle actin (α-SMA), phosphatidylinositol-3-kinase (PI3K) and phospho protein kinase B (p-AKT) were assessed using Western blot. RESULTS: TXL improved cardiac function in MIRI mice, reduced the degree of myocardial fibrosis, increased the expression of CD31 and inhibited the expression of α-SMA, thus inhibited the occurrence of EndMT (P<0.05 or P<0.01). TXL significantly increased the protein expressions of PI3K and p-AKT (P<0.05 or P<0.01). There was no significant difference between TXL and BNPL group (P>0.05). In addition, the use of the PI3K/AKT pathway-specific inhibitor LY-294002 to block this pathway and combination with TXL intervention, eliminated the protective effect of TXL, further supporting the protective effect of TXL. CONCLUSION: TXL activated the PI3K/AKT signaling pathway to inhibit EndMT and attenuated myocardial fibrosis after MIRI in mice.

2.
Article En | MEDLINE | ID: mdl-38343495

Purpose: Acute Exacerbation of Chronic Obstructive Pulmonary Disease (AECOPD) is a sudden worsening of symptoms in patients with Chronic Obstructive Pulmonary Disease (COPD), such as cough, increased sputum volume, and sputum purulence. COPD and AECOPD are characterized by damage to cilia and increased mucus secretion. Mucociliary clearance (MCC) functions as part of the primary innate system of the lung to remove harmful particles and pathogens together with airway mucus and is therefore crucial for patients with COPD. Methods: AECOPD was induced by cigarette smoke exposure (80 cigarettes/day, 5 days/week for 12 weeks) and lipopolysaccharide (LPS) instillation (200 µg, on days 1, 14, and 84). Rats administered Lianhua Qingke (LHQK) (0.367, 0.732, and 1.465 g/kg/d) or Eucalyptol, Limonene, and Pinene Enteric Soft Capsules (ELP, 0.3 g/kg/d) intragastrically. Pulmonary pathology, Muc5ac+ goblet cell and ß-tubulin IV+ ciliated cells, and mRNA levels of forkhead box J1 (Foxj1) and multiciliate differentiation and DNA synthesis associated cell cycle protein (MCIDAS) were assessed by hematoxylin and eosin staining, immunofluorescence staining, and RT-qPCR, respectively. Ciliary morphology and ultrastructure were examined through scanning electron microscopy and transmission electron microscopy. Ciliary beat frequency (CBF) was recorded using a high-speed camera. Results: Compared to the model group, LHQK treatment groups showed a reduction in inflammatory cell infiltration, significantly reduced goblet cell and increased ciliated cell proportion. LHQK significantly upregulated mRNA levels of MCIDAS and Foxj1, indicating promoted ciliated cell differentiation. LHQK protected ciliary structure and maintained ciliary function via increasing the ciliary length and density, reducing ciliary ultrastructure damage, and ameliorating random ciliary oscillations, consequently enhancing CBF. Conclusion: LHQK enhances the MCC capability of ciliated cells in rat with AECOPD by preserving the structural integrity and beating function of cilia, indicating its therapeutic potential on promoting sputum expulsion in patients with AECOPD.


Cilia , Pulmonary Disease, Chronic Obstructive , Humans , Rats , Animals , Cilia/pathology , Cilia/ultrastructure , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/pathology , Mucociliary Clearance , Epithelial Cells , RNA, Messenger
3.
Chin Med ; 18(1): 145, 2023 Nov 03.
Article En | MEDLINE | ID: mdl-37924136

BACKGROUND: Lianhua Qingke (LHQK) is an effective traditional Chinese medicine used for treating acute tracheobronchitis. In this study, we evaluated the effectiveness of LHQK in managing airway mucus hypersecretion in the acute exacerbation of chronic obstructive pulmonary disease (AECOPD). METHODS: The AECOPD model was established by subjecting male Wistar rats to 12 weeks of cigarette smoke (CS) exposure (80 cigarettes/day, 5 days/week for 12 weeks) and intratracheal lipopolysaccharide (LPS) exposure (200 µg, on days 1, 14, and 84). The rats were divided into six groups: control (room air exposure), model (CS + LPS exposure), LHQK (LHQK-L, LHQK-M, and LHQK-H), and a positive control group (Ambroxol). H&E staining, and AB-PAS staining were used to evaluate lung tissue pathology, inflammatory responses, and goblet cell hyperplasia. RT-qPCR, immunohistochemistry, immunofluorescence and ELISA were utilized to analyze the transcription, expression and secretion of proteins related to mucus production in vivo and in the human airway epithelial cell line NCI-H292 in vitro. To predict and screen the active ingredients of LHQK, network pharmacology analysis and NF-κB reporter system analysis were employed. RESULTS: LHQK treatment could ameliorate AECOPD-triggered pulmonary structure damage, inflammatory cell infiltration, and pro-inflammatory cytokine production. AB-PAS and immunofluorescence staining with CCSP and Muc5ac antibodies showed that LHQK reduced goblet cell hyperplasia, probably by inhibiting the transdifferentiation of Club cells into goblet cells. RT-qPCR and immunohistochemistry of Muc5ac and APQ5 showed that LHQK modulated mucus homeostasis by suppressing Muc5ac transcription and hypersecretion in vivo and in vitro, and maintaining the balance between Muc5ac and AQP5 expression. Network pharmacology analysis and NF-κB luciferase reporter system analysis provided insights into the active ingredients of LHQK that may help control airway mucus hypersecretion and regulate inflammation. CONCLUSION: LHQK demonstrated therapeutic effects in AECOPD by reducing inflammation, suppressing goblet cell hyperplasia, preventing Club cell transdifferentiation, reducing Muc5ac hypersecretion, and modulating airway mucus homeostasis. These findings support the clinical use of LHQK as a potential treatment for AECOPD.

4.
Vet Microbiol ; 271: 109475, 2022 Aug.
Article En | MEDLINE | ID: mdl-35660287

Toll-like receptor 7 (TLR7) agonists have been shown to exert therapeutic effects against several viruses. However, antiviral potential of TLR7 agonist in inhibiting porcine reproductive and respiratory syndrome virus (PRRSV) infection has not been assessed in vivo. In our previous study, a synthetic TLR7 agonist, SZU101, was confirmed to inhibit PRRSV infection of porcine alveolar macrophages (PAMs). Here, antiviral effects of SZU101 were evaluated in PRRSV-challenged piglets based on assessments of rectal temperature, viremia, gross and microscopic lung lesions, PRRSV-specific antibodies, PRRSV-specific lymphocyte proliferation and serum IFN-ß level. Our results revealed that SZU101 treatment alleviated PRRSV-induced rectal temperature spikes, pulmonary pathologic changes, and serum viral load. Meanwhile, administration of SZU101 led to increased proliferation of PRRSV-specific lymphocytes and serum IFN-ß levels, but did not enhance PRRSV-specific antibody production. These results demonstrate that SZU101 has potential as a therapeutic treatment for PRRS.


Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Swine Diseases , Adjuvants, Immunologic/pharmacology , Animals , Antibodies, Viral , Antiviral Agents/pharmacology , Interferon-beta/pharmacology , Macrophages, Alveolar , Porcine Reproductive and Respiratory Syndrome/drug therapy , Swine , Toll-Like Receptor 7 , Virus Replication
5.
Biomed Pharmacother ; 145: 112367, 2022 Jan.
Article En | MEDLINE | ID: mdl-34740097

Cardiovascular comorbidities are pervasive in chronic obstructive pulmonary disease (COPD) and often result in serious adverse cardiovascular events. Tongxinluo (TXL) has been clinically verified to treat atherosclerosis (AS), improve lung function and alleviate dyspnoea. The present study aimed to explore the effect of lung microvascular barrier dysfunction on AS in COPD and the potential pulmonary protective mechanisms of TXL in COPD complicated with AS. COPD complicated with AS was induced in mice by cigarette smoke (CS) exposure and high-fat diet (HFD) feeding. The mice were treated with atorvastatin (ATO), TXL or combination therapy (ATO+TXL) for 20 weeks. Pulmonary function, lung pathology, serum lipid levels, atherosclerotic plaque area and indicators of barrier function, oxidative stress and ferroptosis in lung tissue were evaluated. In vitro, human pulmonary microvascular endothelial cells (HPMECs) were pretreated with TXL for 4 h and then incubated with cigarette smoke extract (CSE) and homocysteine (Hcy) for 36 h to induce barrier dysfunction. Then the indicators of barrier function, oxidative stress and ferroptosis were measured. The results demonstrate that CS aggravated dyslipidaemia, atherosclerotic plaque formation, pulmonary function decline, pathological injury, barrier dysfunction, oxidative stress and ferroptosis in the HFD-fed mice. However, these abnormalities were partially reversed by ATO and TXL. Similar results were observed in vitro. In conclusion, pulmonary microvascular barrier dysfunction plays an important role by which COPD affects the progression of AS, and ferroptosis may be involved. Moreover, TXL delays the progression of AS and reduces cardiovascular events by protecting the pulmonary microvascular barrier and inhibiting ferroptosis.


Atherosclerosis/drug therapy , Drugs, Chinese Herbal/pharmacology , Endothelial Cells/drug effects , Pulmonary Disease, Chronic Obstructive/drug therapy , Animals , Atherosclerosis/pathology , Cells, Cultured , Diet, High-Fat , Disease Models, Animal , Disease Progression , Ferroptosis/drug effects , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout, ApoE , Oxidative Stress/drug effects , Plaque, Atherosclerotic/drug therapy , Plaque, Atherosclerotic/pathology , Pulmonary Disease, Chronic Obstructive/pathology
6.
Sensors (Basel) ; 21(11)2021 Jun 02.
Article En | MEDLINE | ID: mdl-34199626

Pixel-based semantic segmentation models fail to effectively express geographic objects and their topological relationships. Therefore, in semantic segmentation of remote sensing images, these models fail to avoid salt-and-pepper effects and cannot achieve high accuracy either. To solve these problems, object-based models such as graph neural networks (GNNs) are considered. However, traditional GNNs directly use similarity or spatial correlations between nodes to aggregate nodes' information, which rely too much on the contextual information of the sample. The contextual information of the sample is often distorted, which results in a reduction in the node classification accuracy. To solve this problem, a knowledge and geo-object-based graph convolutional network (KGGCN) is proposed. The KGGCN uses superpixel blocks as nodes of the graph network and combines prior knowledge with spatial correlations during information aggregation. By incorporating the prior knowledge obtained from all samples of the study area, the receptive field of the node is extended from its sample context to the study area. Thus, the distortion of the sample context is overcome effectively. Experiments demonstrate that our model is improved by 3.7% compared with the baseline model named Cluster GCN and 4.1% compared with U-Net.


Image Processing, Computer-Assisted , Semantics , Neural Networks, Computer , Remote Sensing Technology , Specimen Handling
7.
Vet Parasitol ; 266: 56-62, 2019 Feb.
Article En | MEDLINE | ID: mdl-30736947

In this study, the acaricidal effect of eugenol was measured and its mechanism of action investigated. The results showed that eugenol possessed the effect of killing Psoroptes cuniculi, and could regulate the mRNA expression of glutathione S-transferase (GST), catechinic acid (Ca) and thioredoxin (Trx). PPAR, NF-kappa B, TNF, Rap 1 and Ras signaling pathways might be the main pathways that involved into the process of killing mites. These findings suggested that eugenol could be developed into a new kind of acaricide, and further expand current knowledge on the mechanisms of eugenol for killing Psoroptes cuniculi of eugenol.


Acaricides/pharmacology , Eugenol/pharmacology , Psoroptidae/drug effects , Animals , Catechin/genetics , Gene Expression Profiling , Glutathione Transferase/genetics , Plant Extracts/pharmacology , Psoroptidae/genetics , Signal Transduction/drug effects
...