Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Food Sci ; 89(7): 4493-4504, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38804852

RESUMEN

Study on the hypolipidemic effect of turmeric combined with hawthorn on C57BL/6 obese mice and its possible mechanism. C57 mice were fed with 60% high-fat diet for 8 weeks to establish an obesity model, and 4 mice were slaughtered to verify whether the modeling was successful. The successful mice were divided into model group (HFD), positive group (high fat feed group [HFD] + simvastatin group [SIM]), turmeric group (HFD + TUR), hawthorn group (HFD + HAW), and para-medicine group (HFD + para-drug group [DOU]) for 4 weeks by gavage intervention. Different intervention groups had certain lipid-lowering effects, and the para-medicine group showed significant differences (p < 0.05, p < 0.01, p < 0.001) in reducing serum total cholesterol, triglycerides, low-density lipoprotein cholesterol, glutamic acid transaminase (ALT), glutamic acid transaminase (AST), and increasing high-density lipoprotein cholesterol. In the para-medicine group, the protein expression of peroxisome proliferator-activated receptor γ, fatty acid synthase, platelet-reactive protein receptor 36, and CCAAT/enhancer binding protein α were significantly downregulated, and the protein expression of carnitine palmitoyl transferase1 and peroxisome proliferator-activated receptor α protein expression (p < 0.01, p < 0.001), thus suggesting that turmeric and hawthorn are superior to turmeric and hawthorn alone in enhancing lipid metabolism-related mechanisms. Combined effects of turmeric and hawthorn improve lipid metabolism in mice, protect the liver, and improve the protein expression of liver-related genes. This study can lay the theoretical basis for the future association of medicinal food products and the development of related weight loss products.


Asunto(s)
Crataegus , Curcuma , Dieta Alta en Grasa , Hipolipemiantes , Ratones Endogámicos C57BL , Obesidad , Extractos Vegetales , Triglicéridos , Animales , Curcuma/química , Ratones , Crataegus/química , Obesidad/metabolismo , Obesidad/tratamiento farmacológico , Masculino , Hipolipemiantes/farmacología , Extractos Vegetales/farmacología , Triglicéridos/sangre , Ratones Obesos , Hígado/metabolismo , Hígado/efectos de los fármacos , Colesterol/sangre , Alanina Transaminasa/sangre , PPAR gamma/metabolismo , PPAR gamma/genética , Metabolismo de los Lípidos/efectos de los fármacos , LDL-Colesterol/sangre , Modelos Animales de Enfermedad
2.
Int J Biol Macromol ; 264(Pt 2): 130776, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38471614

RESUMEN

The present study focused on the extraction of water-soluble dietary fiber (CSDF) and water-insoluble dietary fiber (CIDF) from celery. It investigated their effects on glutinous rice starch's (GRS) physicochemical, structural, and digestive properties. The results showed that as the addition of the two dietary fibers increased, they compounded with GRS to varying degrees, with the complexing index reaching 69.41 % and 60.81 %, respectively. The rheological results indicated that the two dietary fibers reduced the viscosity of GRS during pasting and inhibited the short-term regrowth of starch. The FTIR and XRD results revealed that the two fibers interacted with GRS through hydrogen bonding, effectively inhibiting starch retrogradation. Furthermore, both fibers increased the pasting temperature of GRS, thus delaying its pasting and exhibiting better thermal stability. Regarding digestibility, the starch gels containing dietary fibers exhibited significantly reduced digestibility, with RS significantly increased by 8.15 % and 8.95 %, respectively. This study provides insights into the interaction between two dietary fibers and GRS during processing. It enriches the theoretical model of dietary fiber-starch interaction and provides a reference for the application development of starch-based functional foods.


Asunto(s)
Apium , Oryza , Oryza/química , Almidón/química , Fibras de la Dieta , Viscosidad , Agua
3.
Int J Biol Macromol ; 263(Pt 2): 130331, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38403209

RESUMEN

This study aimed to investigate the multiscale structure, physicochemical properties, and in vitro digestibility of black rice starch (BRS) and gallic acid (GA) complexes prepared using varying ultrasound powers. The findings revealed that ultrasonic treatment disrupted BRS granules while enhancing the composite degree with GA. The starch granules enlarged and aggregated into complexes with uneven surfaces. Moreover, the crystallinity of the BRS-GA complexes increased to 22.73 % and formed V6-I-type complexes through non-covalent bonds. The increased short-range ordering of the complexes and nuclear magnetic resonance hydrogen (1H NMR) further indicated that the BRS and GA molecules interacted mainly through non-covalent bonds such as hydrogen bonds. Additionally, ultrasound reduced the viscoelasticity of the complexes while minimizing the mass loss of the complexes at the same temperature. In vitro digestion results demonstrated an increase in resistant starch content up to 37.60 % for the BRS-GA complexes. Therefore, ultrasound contributes to the formation of V-typed complexes of BRS and GA, which proves the feasibility of using ultrasound alone for the preparation of starch and polyphenol complexes while providing a basis for the multiscale structure and digestibility of polyphenol and starch complexes.


Asunto(s)
Oryza , Oryza/química , Ácido Gálico/química , Digestión , Almidón/química , Polifenoles
4.
Int J Biol Macromol ; 261(Pt 2): 129869, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38302031

RESUMEN

The digestibility of starch-based foods is receiving increased attention. To date, the full understanding of how including L-theanine (THE) can modify the structural and digestive properties of starch has not been fully achieved. Here, we investigated the multi-scale structure and digestibility of maize starch (MS) regulated by THE in ultrasound field and the molecular interactions. Ultrasound disrupted the structure of starch granules and opened the molecular chains of starch, promoting increased THE binding and producing more low-order or disordered crystal structures. In this case, the aggregation of starch molecules, especially amylose, was reduced, leading to increased mobility of the systems. As a result, the apparent viscosity, G', and G" were significantly decreased, which retarded the starch regeneration. Density functional theory calculations indicated that there were mainly non-covalent interactions between THE and MS, such as hydrogen bonding and van der Waals forces. These interactions were the main factors contributing to the decrease in the short-range ordering, the helical structure, and the enthalpy change (ΔH) of MS. Interestingly, the rapidly digestible starch (RDS) content of THE modified MS (MS-THE-30) decreased by 17.89 %, while the resistant starch increased to 26.65 %. These results provide new strategies for the safe production of resistant starch.


Asunto(s)
Glutamatos , Almidón Resistente , Zea mays , Zea mays/química , Almidón Resistente/metabolismo , Ultrasonido , Almidón/química , Amilosa/química , Digestión
5.
Int J Biol Macromol ; 259(Pt 1): 129243, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38199535

RESUMEN

This study aimed to investigate the influence of ball milling assisted treatment on the degree of substitution of octenyl succinic anhydride (OSA) modified highland barley starch (HBS) and on the physicochemical properties and structure of HBS. Scanning electron microscopy (SEM) findings showed that with the increasing of ball milling time, the surface morphology of OSA modified HBS became rougher and rougher and the particle morphology and crystal structure were damaged. When the pretreatment time of ball milling was 40 min, the degree of substitution of OSA modified HBS was 1.32 times higher than that of the conventional modification method. In addition, the longer the ball milling assistant, the longer the short-range ordering of the OSA modified HBS significantly decreased, and the relative crystallinity decreased (from 16.68 % to 7.93 %), leading to a decrease in thermal stability too. However, it greatly enhanced the aging resistance and flowability. In terms of emulsification properties, the emulsification properties of OSA modified HBS increased from 60.67 % to 75.67 %. Therefore, the HBS with better freeze-thaw stability and higher degree of substitution can be prepared by ball milling pretreatment and OSA modification, which provides technical support for further development of starch resources.


Asunto(s)
Hordeum , Almidón , Almidón/química , Anhídridos Succínicos/química , Congelación
6.
Int J Biol Macromol ; 258(Pt 1): 128938, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38143061

RESUMEN

In this study, type III resistant starch (RS3) was prepared from high amylose maize starch (HAMS) using hydrothermal (RS-H), hydrothermal combined ultrasonication (RS-HU), hydrothermal-alkali (RS-HA), and hydrothermal-alkali combined ultrasonication (RS-HAU). The role of the preparation methods and the mechanism of RS3 formation were analyzed by studying the multiscale structure and digestibility of the starch. The SEM, NMR, and GPC results showed that hydrothermal-alkali combined with ultrasonication could destroy the granule structure and α-1,6 glycosidic bond of HAMS and reduce the molecular weight of HAMS from 195.306 kDa to 157.115 kDa. The other methods had a weaker degree of effect on the structure of HAMS, especially hydrothermal and hydrothermal combined ultrasonication. The multiscale structural results showed that the relative crystallinity, short-range orderliness, and thermal stability of RS-HAU were significantly higher compared with native HAMS. In terms of digestion, RS-HAU had the highest RS content of 69.40 %. In summary, HAMS can generate many short-chain amylose due to structural damage, which rearrange to form digestion-resistant crystals. With correlation analysis, we revealed the relationship between the multiscale structure and the RS content, which can be used to guide the preparation of RS3.


Asunto(s)
Amilosa , Almidón Resistente , Amilosa/química , Zea mays/química , Ultrasonido , Digestión , Almidón/química
7.
Int J Biol Macromol ; 244: 125397, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37327927

RESUMEN

In this study, high amylose maize starch(HAMS)was treated by Hydrothermal-alkali. SEM, SAXS, XRD, FTIR, LC-Raman, 13C CP/MAS NMR, GPC and TGA were used to study the changes in the granules and structure of HAMS. The results show that the granule morphology, lamellar structure, and birefringence of HAMS remained intact at 30 °C and 45 °C. With increasing temperature, the starch granules are fragmented, and the crystallinity, DD, FWHM values, molecular weight, and thermal stability of HAMS decrease. The double helical structure dissociated, and the content of amorphous regions increased, indicating the from order to the disorder of the HAMS structure. A similar annealing behavior occurred in HAMS at 45 °C, with the rearrangement of amylose and amylopectin occurring. At 75 °C and 90 °C, the short-chain starch produced by chain breakage regroups to form an ordered double helix structure. In general, the granule structure level of HAMS was damaged to different degrees at varying temperatures. HAMS showed gelatinization behavior in alkaline solutions when the temperature is 60 °C. This study expects to provide a model for the gelatinization theory of HAMS systems.


Asunto(s)
Amilosa , Zea mays , Amilosa/química , Temperatura , Zea mays/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Almidón/química
8.
Carbohydr Polym ; 314: 120940, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37173023

RESUMEN

This work focused on the pathways by which NCC regulated the digestibility of corn starch. The addition of NCC changed the viscosity of the starch during pasting, improved the rheological properties and short-range order of the starch gel, and finally formed a compact, ordered, and stable gel structure. In this respect, NCC affected the digestion process by changing the properties of the substrate, which reduced the degree and rate of starch digestion. Moreover, NCC induced changes in the intrinsic fluorescence, secondary conformation, and hydrophobicity of α-amylase, which lowered its activity. Molecular simulation analyses suggested that NCC bonded with amino acid residues (Trp 58, Trp 59, and Tyr 62) at the active site entrance via hydrogen bonding and van der Waals forces. In conclusion, NCC decreased CS digestibility by modifying the gelatinization and structural properties of starch and inhibiting α-amylase activity. This study provides new insights into the mechanisms by which NCC regulates starch digestibility, which could be beneficial for the development of functional foods to tackle type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Almidón , Almidón/química , Celulosa/química , Zea mays/química , Digestión , alfa-Amilasas
9.
Int J Biol Macromol ; 237: 124187, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36990406

RESUMEN

In this work, Corn Starch (CS)-Lauric acid (LA) complexes prepared by different ultrasound times were explored for multi-scale structure and digestibility. The results showed that the average molecular weight of the CS decreased from 380.478 to 323.989 kDa and the transparency increased to 38.55 % after 30 min of ultrasound treatment. The scanning electron microscope (SEM) results revealed a rough surface and agglomeration of the prepared complexes. The complexing index of the CS-LA complexes increased by 14.03 % compared to the non-ultrasound group. The prepared CS-LA complexes formed a more ordered helical structure and a more dense V-shaped crystal structure through hydrophobic interactions and hydrogen bonding. In addition, fourier transforms infrared spectroscopy and the molecular docking revealed that the hydrogen bonds formed by CS and LA promoted the formation of an ordered structure of the polymer, retarding the diffusion of the enzyme and thus reducing the digestibility of the starch. With correlation analysis, we provided insight into the multi-scale structure-digestibility relationship in the CS-LA complexes, which provided a basis for the relationship between structure and digestibility of lipid-containing starchy foods.


Asunto(s)
Almidón , Almidón/química , Simulación del Acoplamiento Molecular , Espectroscopía Infrarroja por Transformada de Fourier , Enlace de Hidrógeno , Peso Molecular
10.
Int J Biol Macromol ; 234: 123695, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36801275

RESUMEN

In this work, cellulose nanocrystal (CNC) was extracted from black tea waste and its effects on the physicochemical properties of rice starch were explored. It was revealed that CNC improved the viscosity of starch during pasting and inhibited its short-term retrogradation. The addition of CNC changed the gelatinization enthalpy and improved the shear resistance, viscoelasticity, and short-range ordering of starch paste, which meant that CNC made the starch paste system more stable. The interaction of CNC with starch was analyzed using quantum chemistry methods, and it was demonstrated that the hydrogen bonds were formed between starch molecules and the hydroxyl groups of CNC. In addition, the digestibility of starch gels containing CNC was significantly decreased because CNC could dissociate and act as an inhibitor of amylase. This study further expanded the understanding of the interactions between CNC and starch during processing, which could provide a reference for the application of CNC in starch-based foods and the development of functional foods with a low glycemic index.


Asunto(s)
Camellia sinensis , Oryza , Oryza/química , , Celulosa , Almidón/química , Termodinámica , Viscosidad
11.
Int J Biol Macromol ; 224: 1313-1321, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36306903

RESUMEN

High amylose corn starch (HACS)-oat ß-glucan (OBG) complex was prepared by ball milling treatment. The morphology and structure of the samples were characterized, and the digestibility of the samples was studied. SEM analysis showed that the grain structure of oat ß-glucan-starch after ball milling showed an irregular aggregate shape. The rheological results indicated that the apparent viscosity of the solution of HACS-OBG complex prepared by ball milling, with the values of both G' and G″ decreasing on the increase of OBG addition. Multi-scale structure analysis showed that the disorder of the crystal structure and short-range structure of the HACS-OBG complex would lead to the decrease of the double helix structure content. In terms of digestibility, the RDS of the complex decreased from 75.88 % to 66.26 %, which suppressed the digestibility of starch. Molecular docking and quantum chemistry techniques further demonstrated the strong hydrogen bond interaction between HACS and OBG and the inhibition rate of OBG on the enzyme, which was conducive to the slow digestion of HACS-OBG complex. Therefore, ball milling treatment can promote the binding of OBG to starch, which may be an effective method for postprandial blood glucose control.


Asunto(s)
Almidón , beta-Glucanos , Almidón/química , Simulación del Acoplamiento Molecular , beta-Glucanos/química , Amilosa , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...