Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
PLoS Genet ; 18(6): e1010264, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35771772

RESUMEN

Autophagy is an indispensable process that degrades cytoplasmic materials to maintain cellular homeostasis. During autophagy, double-membrane autophagosomes surround cytoplasmic materials and either fuse with endosomes (called amphisomes) and then lysosomes, or directly fuse with lysosomes, in both cases generating autolysosomes that degrade their contents by lysosomal hydrolases. However, it remains unclear if there are specific mechanisms and/or conditions which distinguish these alternate routes. Here, we identified PACSIN1 as a novel autophagy regulator. PACSIN1 deletion markedly decreased autophagic activity under basal nutrient-rich conditions but not starvation conditions, and led to amphisome accumulation as demonstrated by electron microscopic and co-localization analysis, indicating inhibition of lysosome fusion. PACSIN1 interacted with SNAP29, an autophagic SNARE, and was required for proper assembly of the STX17 and YKT6 complexes. Moreover, PACSIN1 was required for lysophagy, aggrephagy but not mitophagy, suggesting cargo-specific fusion mechanisms. In C. elegans, deletion of sdpn-1, a homolog of PACSINs, inhibited basal autophagy and impaired clearance of aggregated protein, implying a conserved role of PACSIN1. Taken together, our results demonstrate the amphisome-lysosome fusion process is preferentially regulated in response to nutrient state and stress, and PACSIN1 is a key to specificity during autophagy.


Asunto(s)
Caenorhabditis elegans , Macroautofagia , Animales , Autofagosomas/metabolismo , Autofagia/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Lisosomas/metabolismo , Macroautofagia/genética , Proteínas SNARE/metabolismo
3.
BMC Infect Dis ; 17(1): 229, 2017 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-28340557

RESUMEN

BACKGROUND: Identification of carbapenemase-producing Enterobacteriaceae (CPE) in faecal specimens is challenging. This fact is particularly critical because low-level carbapenem-resistant organisms such as IMP-producing CPE are most prevalent in Japan. We developed a modified selective medium more suitable for IMP-type CPE. METHODS: Fifteen reference CPE strains producing different types of ß-lactamases were used to evaluate the commercially available CHROMagar KPC and chromID CARBA as well as the newly prepared MC-ECC medium (CHROMagar ECC supplemented with meropenem, cloxacillin, and ZnSO4) and M-ECC medium (CHROMagar ECC supplemented with meropenem and ZnSO4). A total of 1035 clinical samples were then examined to detect CPE using chromID CARBA and M-ECC medium. RESULTS: All tested strains producing NDM-, KPC-, and OXA-48-carbapenemases were successfully cultured in the media employed. Although most of the IMP-positive strains did not grow in CHROMagar KPC, chromID CARBA, or MC-ECC, all tested strains grew on M-ECC. When faecal samples were applied to the media, M-ECC medium allowed the best growth of IMP-type CPE with a significantly higher sensitivity (99.3%) than that of chromID CARBA (13.9%). CONCLUSIONS: M-ECC medium was determined as the most favourable selective medium for the detection of IMP-type CPE as well as other types of CPE.


Asunto(s)
Proteínas Bacterianas , Técnicas de Tipificación Bacteriana/métodos , Medios de Cultivo , Infecciones por Enterobacteriaceae , Enterobacteriaceae , Inosina Monofosfato/metabolismo , beta-Lactamasas , Enterobacteriaceae/enzimología , Enterobacteriaceae/aislamiento & purificación , Enterobacteriaceae/metabolismo , Infecciones por Enterobacteriaceae/diagnóstico , Infecciones por Enterobacteriaceae/microbiología , Heces/microbiología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...