Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Exp Clin Cancer Res ; 41(1): 131, 2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35392965

RESUMEN

BACKGROUND: Hypoxia is a hallmark of the tumor microenvironment (TME) and in addition to altering metabolism in cancer cells, it transforms tumor-associated stromal cells. Within the tumor stromal cell compartment, tumor-associated macrophages (TAMs) provide potent pro-tumoral support. However, TAMs can also be harnessed to destroy tumor cells by monoclonal antibody (mAb) immunotherapy, through antibody dependent cellular phagocytosis (ADCP). This is mediated via antibody-binding activating Fc gamma receptors (FcγR) and impaired by the single inhibitory FcγR, FcγRIIb. METHODS: We applied a multi-OMIC approach coupled with in vitro functional assays and murine tumor models to assess the effects of hypoxia inducible factor (HIF) activation on mAb mediated depletion of human and murine cancer cells. For mechanistic assessments, siRNA-mediated gene silencing, Western blotting and chromatin immune precipitation were utilized to assess the impact of identified regulators on FCGR2B gene transcription. RESULTS: We report that TAMs are FcγRIIbbright relative to healthy tissue counterparts and under hypoxic conditions, mononuclear phagocytes markedly upregulate FcγRIIb. This enhanced FcγRIIb expression is transcriptionally driven through HIFs and Activator protein 1 (AP-1). Importantly, this phenotype reduces the ability of macrophages to eliminate anti-CD20 monoclonal antibody (mAb) opsonized human chronic lymphocytic leukemia cells in vitro and EL4 lymphoma cells in vivo in human FcγRIIb+/+ transgenic mice. Furthermore, post-HIF activation, mAb mediated blockade of FcγRIIb can partially restore phagocytic function in human monocytes. CONCLUSION: Our findings provide a detailed molecular and cellular basis for hypoxia driven resistance to antitumor mAb immunotherapy, unveiling a hitherto unexplored aspect of the TME. These findings provide a mechanistic rationale for the modulation of FcγRIIb expression or its blockade as a promising strategy to enhance approved and novel mAb immunotherapies.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Receptores de IgG , Animales , Anticuerpos Monoclonales/farmacología , Humanos , Hipoxia/metabolismo , Inmunoterapia , Leucemia Linfocítica Crónica de Células B/metabolismo , Macrófagos/metabolismo , Ratones , Receptores de IgG/genética , Receptores de IgG/metabolismo , Microambiente Tumoral
2.
Clin Immunol ; 234: 108910, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34922003

RESUMEN

Genetic variants in PIK3CD, PIK3R1 and NFKB1 cause the primary immune deficiencies, activated PI3Kδ syndrome (APDS) 1, APDS2 and NFκB1 haploinsufficiency, respectively. We have identified a family with known or potentially pathogenic variants NFKB1, TNFRSF13B and PIK3R1. The study's aim was to describe their associated immune and cellular phenotypes and compare with individuals with monogenic disease. NFκB1 pathway function was measured by immunoblotting and PI3Kδ pathway activity by phospho-flow cytometry. p105/p50 expression was absent in two individuals but elevated pS6 only in the index case. Transfection of primary T cells demonstrated increased basal pS6 signalling due to mutant PIK3R1, but not mutant NFKB1 or their wildtype forms. We report on the presence of pathogenic variant NFKB1, with likely modifying variants in TNFRSF13B and PIK3R1 in a family. We describe immune features of both NFκB1 haploinsufficiency and APDS2, and the inhibition of excessive PI3K signalling by rapamycin in vitro.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase Ia/genética , Haploinsuficiencia , Síndromes de Inmunodeficiencia/genética , Subunidad p50 de NF-kappa B/genética , Proteína Activadora Transmembrana y Interactiva del CAML/genética , Adolescente , Adulto , Femenino , Humanos , Síndromes de Inmunodeficiencia/etiología , Síndromes de Inmunodeficiencia/inmunología , Masculino , Mutación , Adulto Joven
3.
Blood Adv ; 5(15): 2935-2944, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34323957

RESUMEN

Single-nucleotide polymorphisms (SNPs) have been shown to influence Fcγ receptor (FcγR) affinity and activity, but their effect on treatment response is unclear. We assessed their importance in the efficacy of obinutuzumab or rituximab combined with chemotherapy in untreated advanced follicular lymphoma (FL) and diffuse large B-cell lymphoma (DLBCL) in the GALLIUM (www.clinicaltrials.gov #NCT01332968) and GOYA (#NCT01287741) trials, respectively. Genomic DNA was extracted from patients enrolled in GALLIUM (n = 1202) and GOYA (n = 1418). Key germline SNPs, FCGR2A R131H (rs1801274), FCGR3A F158V (rs396991), and FCGR2B I232T (rs1050501), were genotyped and assessed for their impact on investigator-assessed progression-free survival (PFS). In both cohorts there was no prognostic effect of FCGR2A or FCGR3A. In FL, FCGR2B was associated with favorable PFS in univariate and multivariate analyses comparing I232T with I232I, with a more modest association for rituximab-treated (univariate: hazard ratio [HR], 0.78; 95% confidence interval [CI], 0.54-1.14; P = .21) vs obinutuzumab-treated patients (HR, 0.56; 95% CI, 0.34-0.91; P = .02). Comparing T232T with I232I, an association was found for obinutuzumab (univariate: HR, 2.76; 95% CI, 1.02-7.5; P = .0459). Neither observation retained significance after multiple-test adjustment. FCGR2B was associated with poorer PFS in multivariate analyses comparing T232T with I232I in rituximab- but not obinutuzumab-treated patients with DLBCL (HR, 4.40; 95% CI, 1.71-11.32; P = .002; multiple-test-adjusted P = .03); however, this genotype was rare (n = 13). This study shows that FcγR genotype is not associated with response to rituximab/obinutuzumab plus chemotherapy in treatment-naive patients with advanced FL or DLBCL.


Asunto(s)
Linfoma Folicular , Receptores de IgG , Humanos , Anticuerpos Monoclonales Humanizados , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Linfoma Folicular/tratamiento farmacológico , Polimorfismo de Nucleótido Simple , Receptores de IgG/genética , Rituximab/uso terapéutico
4.
Blood Adv ; 5(15): 2945-2957, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34323958

RESUMEN

Fc γ receptor IIB (FcγRIIB) is an inhibitory molecule capable of reducing antibody immunotherapy efficacy. We hypothesized its expression could confer resistance in patients with diffuse large B-cell lymphoma (DLBCL) treated with anti-CD20 monoclonal antibody (mAb) chemoimmunotherapy, with outcomes varying depending on mAb (rituximab [R]/obinutuzumab [G]) because of different mechanisms of action. We evaluated correlates between FCGR2B messenger RNA and/or FcγRIIB protein expression and outcomes in 3 de novo DLBCL discovery cohorts treated with R plus cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) reported by Arthur, Schmitz, and Reddy, and R-CHOP/G-CHOP-treated patients in the GOYA trial (NCT01287741). In the discovery cohorts, higher FCGR2B expression was associated with significantly shorter progression-free survival (PFS; Arthur: hazard ratio [HR], 1.09; 95% confidence interval [CI], 1.01-1.19; P = .0360; Schmitz: HR, 1.13; 95% CI, 1.02-1.26; P = .0243). Similar results were observed in GOYA with R-CHOP (HR, 1.26; 95% CI, 1.00-1.58; P = .0455), but not G-CHOP (HR, 0.91; 95% CI, 0.69-1.20; P = .50). A nonsignificant trend that high FCGR2B expression favored G-CHOP over R-CHOP was observed (HR, 0.67; 95% CI, 0.44-1.02; P = .0622); however, low FCGR2B expression favored R-CHOP (HR, 1.58; 95% CI, 1.00-2.50; P = .0503). In Arthur and GOYA, FCGR2B expression was associated with tumor FcγRIIB expression; correlating with shorter PFS for R-CHOP (HR, 2.17; 95% CI, 1.04-4.50; P = .0378), but not G-CHOP (HR, 1.37; 95% CI, 0.66-2.87; P = .3997). This effect was independent of established prognostic biomarkers. High FcγRIIB/FCGR2B expression has prognostic value in R-treated patients with DLBCL and may confer differential responsiveness to R-CHOP/G-CHOP.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Linfoma de Células B Grandes Difuso , Anticuerpos Monoclonales Humanizados , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Ciclofosfamida/uso terapéutico , Humanos , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/genética , Pronóstico , Receptores de IgG/genética , Rituximab/uso terapéutico , Vincristina/uso terapéutico
5.
J Clin Immunol ; 41(6): 1315-1330, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34009545

RESUMEN

PURPOSE: Common variable immunodeficiency disorders (CVID) is characterized by low/absent serum immunoglobulins and susceptibility to bacterial infection. Patients can develop an infections-only phenotype or a complex disease course with inflammatory, autoimmune, and/or malignant complications. We hypothesized that deficient DNA repair mechanisms may be responsible for the antibody deficiency and susceptibility to inflammation and cancer in some patients. METHODS: Germline variants were identified following targeted sequencing of n = 252 genes related to DNA repair in n = 38 patients. NanoString nCounter PlexSet assay measured gene expression in n = 20 CVID patients and n = 7 controls. DNA damage and apoptosis were assessed by flow cytometry in n = 34 CVID patients and n = 11 controls. RESULTS: Targeted sequencing supported enrichment of rare genetic variants in genes related to DNA repair pathways with novel and rare likely pathogenic variants identified and an altered gene expression signature that distinguished patients from controls and complex patients from those with an infections-only phenotype. Consistent with this, flow cytometric analyses of lymphocytes following DNA damage revealed a subset of CVID patients whose immune cells have downregulated ATM, impairing the recruitment of other repair factors, delaying repair and promoting apoptosis. CONCLUSION: These data suggest that germline genetics and altered gene expression predispose a subset of CVID patients to increased sensitivity to DNA damage and reduced DNA repair capacity.


Asunto(s)
Apoptosis/genética , Proteínas de la Ataxia Telangiectasia Mutada/genética , Inmunodeficiencia Variable Común/genética , Reparación del ADN/genética , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Daño del ADN/genética , Femenino , Expresión Génica/genética , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Adulto Joven
6.
J Clin Immunol ; 40(2): 406-411, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31897776

RESUMEN

Germline gain-of-function mutations in CARD11 lead to the primary immunodeficiency, B cell expansion with NF-κB, and T cell anergy (BENTA). Herein, we report the case of a girl, presenting at 2 years of age with lymphocytosis and splenomegaly in whom a novel, in-frame, three base pair deletion in CARD11 was identified resulting in the deletion of a single lysine residue (K215del) from the coiled-coil domain. In vitro functional assays demonstrated that this variant leads to a subtle increase in baseline NF-κB signaling and impaired proliferative responses following T cell receptor and mitogenic stimulation. Previously reported immunological defects associated with BENTA appear mild in our patient who is now 6 years of age; a B cell lymphocytosis and susceptibility to upper respiratory tract infections persist; however, she has broad, sustained responses to protein-polysaccharide conjugate vaccines and displays normal proliferative responses to ex vivo T cell stimulation.


Asunto(s)
Linfocitos B/fisiología , Proteínas Adaptadoras de Señalización CARD/genética , Guanilato Ciclasa/genética , Síndromes de Inmunodeficiencia/genética , Linfocitosis/genética , FN-kappa B/metabolismo , Linfocitos T/inmunología , Emparejamiento Base/genética , Proliferación Celular , Células Cultivadas , Niño , Preescolar , Anergia Clonal , Femenino , Heterocigoto , Humanos , Lactante , Activación de Linfocitos , Eliminación de Secuencia/genética
7.
Front Immunol ; 10: 390, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30899264

RESUMEN

Monoclonal antibody (mAb) immunotherapy has transformed the treatment of allergy, autoimmunity, and cancer. The interaction of mAb with Fc gamma receptors (FcγR) is often critical for efficacy. The genes encoding the low-affinity FcγR have single nucleotide polymorphisms (SNPs) and copy number variation that can impact IgG Fc:FcγR interactions. Leukocyte-based in vitro assays remain one of the industry standards for determining mAb efficacy and predicting adverse responses in patients. Here we addressed the impact of FcγR genetics on immune cell responses in these assays and investigated the importance of assay format. FcγR genotyping of 271 healthy donors was performed using a Multiplex Ligation-Dependent Probe Amplification assay. Freeze-thawed/pre-cultured peripheral blood mononuclear cells (PBMCs) and whole blood samples from donors were stimulated with reagents spanning different mAb functional classes to evaluate the association of FcγR genotypes with T-cell proliferation and cytokine release. Using freeze-thawed/pre-cultured PBMCs, agonistic T-cell-targeting mAb induced T-cell proliferation and the highest levels of cytokine release, with lower but measurable responses from mAb which directly require FcγR-mediated cellular effects for function. Effects were consistent for individual donors over time, however, no significant associations with FcγR genotypes were observed using this assay format. In contrast, significantly elevated IFN-γ release was associated with the FCGR2A-131H/H genotype compared to FCGR2A-131R/R in whole blood stimulated with Campath (p ≤ 0.01) and IgG1 Fc hexamer (p ≤ 0.05). Donors homozygous for both the high affinity FCGR2A-131H and FCGR3A-158V alleles mounted stronger IFN-γ responses to Campath (p ≤ 0.05) and IgG1 Fc Hexamer (p ≤ 0.05) compared to donors homozygous for the low affinity alleles. Analysis revealed significant reductions in the proportion of CD14hi monocytes, CD56dim NK cells (p ≤ 0.05) and FcγRIIIa expression (p ≤ 0.05), in donor-matched freeze-thawed PBMC compared to whole blood samples, likely explaining the difference in association between FcγR genotype and mAb-mediated cytokine release in the different assay formats. These findings highlight the significant impact of FCGR2A and FCGR3A SNPs on mAb function and the importance of using fresh whole blood assays when evaluating their association with mAb-mediated cytokine release in vitro. This knowledge can better inform on the utility of in vitro assays for the prediction of mAb therapy outcome in patients.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Afinidad de Anticuerpos/genética , Síndrome de Liberación de Citoquinas/genética , Técnicas Inmunológicas , Polimorfismo de Nucleótido Simple , Receptores de IgG/genética , Anticuerpos Monoclonales/farmacología , Citocinas/biosíntesis , Genotipo , Humanos , Leucocitos Mononucleares/inmunología , Receptores de IgG/inmunología
8.
Br J Clin Pharmacol ; 85(7): 1495-1506, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30866056

RESUMEN

AIMS: Obinutuzumab (G) is a humanized type II, Fc-glycoengineered anti-CD20 monoclonal antibody used in various indications, including patients with previously untreated front-line follicular lymphoma. We investigated sources of variability in G exposure and association of progression-free survival (PFS) with average concentration over induction (CmeanIND ) in front-line follicular lymphoma patients treated with G plus chemotherapy (bendamustine, CHOP, or CVP) in the GALLIUM trial. METHODS: Individual exposures (CmeanIND ) were obtained from a previously established population pharmacokinetic model updated with GALLIUM data. Multivariate Cox proportional hazard models and univariate Kaplan-Meier plots investigated relationships of PFS with exposure and other potential prognostic factors. RESULTS: Overall, G exposure was lower in high body-weight patients and in males, and slightly lower in patients with high baseline tumour burden. Analysis of clinical outcomes showed that variability in G exposure did not impact PFS in G-bendamustine-treated patients; PFS was inferior in males and patients with FCGR2a/2b T232 T low-affinity receptor variant, and superior in patients with FCGR2a/2b I232T variant. In G-CHOP/CVP arms, PFS improved with increasing CmeanIND (hazard ratio = 1.74 and 0.394 at 5th and 95th percentile compared to median CmeanIND ) and was inferior in patients with high baseline tumour size and B symptoms. CONCLUSIONS: It remains unclear whether for G-CHOP/CVP patients lower G exposure is a consequence of adverse disease biology and/or resistance to chemotherapy backbone (higher clearance in nonresponder patients, as demonstrated for rituximab) rather than being the cause of poorer clinical outcome. A study with >1 dose level of G could help resolve this uncertainty.


Asunto(s)
Anticuerpos Monoclonales Humanizados/administración & dosificación , Linfoma Folicular/tratamiento farmacológico , Modelos Biológicos , Anticuerpos Monoclonales Humanizados/farmacocinética , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Clorhidrato de Bendamustina/administración & dosificación , Peso Corporal , Ciclofosfamida/administración & dosificación , Doxorrubicina/administración & dosificación , Resistencia a Antineoplásicos , Femenino , Humanos , Linfoma Folicular/patología , Masculino , Prednisona/administración & dosificación , Supervivencia sin Progresión , Factores Sexuales , Resultado del Tratamiento , Vincristina/administración & dosificación
10.
PLoS One ; 10(11): e0142379, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26545243

RESUMEN

Cancer immunotherapy has been revolutionised by the use monoclonal antibodies (mAb) that function through their interaction with Fc gamma receptors (FcγRs). The low-affinity FcγR genes are highly homologous, map to a complex locus at 1p23 and harbour single nucleotide polymorphisms (SNPs) and copy number variation (CNV) that can impact on receptor function and response to therapeutic mAbs. This complexity can hinder accurate characterisation of the locus. We therefore evaluated and optimised a suite of assays for the genomic analysis of the FcγR locus amenable to peripheral blood mononuclear cells and formalin-fixed paraffin-embedded (FFPE) material that can be employed in a high-throughput manner. Assessment of TaqMan genotyping for FCGR2A-131H/R, FCGR3A-158F/V and FCGR2B-232I/T SNPs demonstrated the need for additional methods to discriminate genotypes for the FCGR3A-158F/V and FCGR2B-232I/T SNPs due to sequence homology and CNV in the region. A multiplex ligation-dependent probe amplification assay provided high quality SNP and CNV data in PBMC cases, but there was greater data variability in FFPE material in a manner that was predicted by the BIOMED-2 multiplex PCR protocol. In conclusion, we have evaluated a suite of assays for the genomic analysis of the FcγR locus that are scalable for application in large clinical trials of mAb therapy. These assays will ultimately help establish the importance of FcγR genetics in predicting response to antibody therapeutics.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Receptores de IgG/genética , Anticuerpos Monoclonales/uso terapéutico , ADN/genética , ADN/aislamiento & purificación , Variaciones en el Número de Copia de ADN , Humanos , Leucocitos Mononucleares/inmunología , Reacción en Cadena de la Polimerasa Multiplex , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN/métodos
11.
Immunol Rev ; 268(1): 6-24, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26497510

RESUMEN

Fcγ receptors (FcγRs) are key immune receptors responsible for the effective control of both humoral and innate immunity and are central to maintaining the balance between generating appropriate responses to infection and preventing autoimmunity. When this balance is lost, pathology results in increased susceptibility to cancer, autoimmunity, and infection. In contrast, optimal FcγR engagement facilitates effective disease resolution and response to monoclonal antibody immunotherapy. The underlying genetics of the FcγR gene family are a central component of this careful balance. Complex in humans and generated through ancestral duplication events, here we review the evolution of the gene family in mammals, the potential importance of copy number, and functionally relevant single nucleotide polymorphisms, as well as discussing current approaches and limitations when exploring genetic variation in this region.


Asunto(s)
Susceptibilidad a Enfermedades , Variación Genética , Receptores de IgG/genética , Receptores de IgG/metabolismo , Animales , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , Evolución Molecular , Dosificación de Gen , Sitios Genéticos , Pruebas Genéticas/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Sistema Inmunológico , Inmunoterapia , Ratones , Familia de Multigenes
12.
Blood ; 125(1): 102-10, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25395427

RESUMEN

The anti-CD28 superagonist antibody TGN1412 caused life-threatening cytokine release syndrome (CRS) in healthy volunteers, which had not been predicted by preclinical testing. T cells in fresh peripheral blood mononuclear cells (PBMCs) do not respond to soluble TGN1412 but do respond following high-density (HD) preculture. We show for the first time that this response is dependent on crystallizable fragment gamma receptor IIb (FcγRIIb) expression on monocytes. This was unexpected because, unlike B cells, circulating monocytes express little or no FcγRIIb. However, FcγRIIb expression is logarithmically increased on monocytes during HD preculture, and this upregulation is necessary and sufficient to explain TGN1412 potency after HD preculture. B-cell FcγRIIb expression is unchanged by HD preculture, but B cells can support TGN1412-mediated T-cell proliferation when added at a frequency higher than that in PBMCs. Although low-density (LD) precultured PBMCs do not respond to TGN1412, T cells from LD preculture are fully responsive when cocultured with FcγRIIb-expressing monocytes from HD preculture, which shows that they are fully able to respond to TGN1412-mediated activation. Our novel findings demonstrate that cross-linking by FcγRIIb is critical for the superagonist activity of TGN1412 after HD preculture, and this may contribute to CRS in humans because of the close association of FcγRIIb-bearing cells with T cells in lymphoid tissues.


Asunto(s)
Anticuerpos Monoclonales Humanizados/química , Monocitos/citología , Receptores de IgG/metabolismo , Regulación hacia Arriba , Animales , Linfocitos B/citología , Antígenos CD28/metabolismo , Células CHO , Proliferación Celular , Técnicas de Cocultivo , Cricetinae , Cricetulus , Citocinas/metabolismo , Humanos , Leucocitos Mononucleares/citología , Linfocitos T/citología , Linfocitos T/inmunología , Transfección
13.
J Clin Endocrinol Metab ; 99(1): E127-31, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24187400

RESUMEN

CONTEXT: A number of small data sets have suggested a potential role for skewed X chromosome activation (XCI), away from the expected 50:50 parent of origin ratio, as an explanation for the strong female preponderance seen in the common autoimmune thyroid diseases (AITD), Graves' disease (GD), and Hashimoto's thyroiditis (HT). OBJECTIVE: The objective of the study was to confirm a role for XCI skewing as a potential explanation for the strong female preponderance seen in AITD. DESIGN: The design of the study was to screen XCI in the largest GD, HT, and control case-control cohort and family cohort to date and undertake a meta-analysis of previous AITD XCI reports. SETTING: The study was conducted at a research laboratory. PATIENTS: Three hundred and nine GD, 490 HT, and 325 female UK Caucasians controls, 273 UK Caucasian GD families, and a meta-analysis of 454 GD, 673 HT, and 643 female Caucasian controls were included in the study. MAIN OUTCOME MEASURES: Case-control and family-based association studies and meta-analysis were measured. RESULTS: Skewed XCI was observed with GD [odds ratio (OR) 2.17 [95% confidence interval (CI) 1.43-3.30], P=2.1×10(-4)] and a trend toward skewing with HT (P=.08) compared with the control cohort. A meta-analysis of our UK data and that of four previous non-UK Caucasian studies confirmed significant skewing of XCI with GD [OR 2.54 (95% CI 1.58-4.10), P=1.0×10(-4), I2=30.2%] and HT [OR 2.40 (95% CI 1.10-5.26), P=.03, I2=74.3%]. CONCLUSIONS: Convincing evidence exists to support a role for skewed XCI in female subjects with AITD, which may, in part, explain the strong female preponderance observed in this disease.


Asunto(s)
Tiroiditis Autoinmune/genética , Inactivación del Cromosoma X/genética , Adulto , Estudios de Casos y Controles , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Masculino , Persona de Mediana Edad , Linaje , Factores Sexuales , Tiroiditis Autoinmune/epidemiología , Reino Unido/epidemiología , Población Blanca/estadística & datos numéricos , Adulto Joven
14.
J Immunol ; 190(11): 5373-81, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23630351

RESUMEN

Graves' disease results from thyroid-stimulating Abs (TSAbs) activating the thyrotropin receptor (TSHR). How TSAbs arise from early precursor B cells has not been established. Genetic and environmental factors may contribute to pathogenesis, including the bacterium Yersinia enterocolitica. We developed two pathogenic monoclonal TSAbs from a single experimental mouse undergoing Graves' disease, which shared the same H and L chain germline gene rearrangements and then diversified by numerous somatic hypermutations. To address the Ag specificity of the shared germline precursor of the monoclonal TSAbs, we prepared rFab germline, which showed negligible binding to TSHR, indicating importance of somatic hypermutation in acquiring TSAb activity. Using rFab chimeras, we demonstrate the dominant role of the H chain V region in TSHR recognition. The role of microbial Ags was tested with Y. enterocolitica proteins. The monoclonal TSAbs recognize 37-kDa envelope proteins, also recognized by rFab germline. MALDI-TOF identified the proteins as outer membrane porin (Omp) A and OmpC. Using recombinant OmpA, OmpC, and related OmpF, we demonstrate cross-reactivity of monoclonal TSAbs with the heterogeneous porins. Importantly, rFab germline binds recombinant OmpA, OmpC, and OmpF confirming reactivity with Y. enterocolitica. A human monoclonal TSAb, M22 with similar properties to murine TSAbs, also binds recombinant porins, showing cross-reactivity of a spontaneously arising pathogenic Ab with Y. enterocolitica. The data provide a mechanistic framework for molecular mimicry in Graves' disease, where early precursor B cells are expanded by Y. enterocolitica porins to undergo somatic hypermutation to acquire a cross-reactive pathogenic response to TSHR.


Asunto(s)
Mutación de Línea Germinal , Enfermedad de Graves/etiología , Inmunoglobulinas Estimulantes de la Tiroides/genética , Inmunoglobulinas Estimulantes de la Tiroides/inmunología , Yersinia enterocolitica/inmunología , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/metabolismo , Expresión Génica , Enfermedad de Graves/genética , Enfermedad de Graves/inmunología , Humanos , Fragmentos Fab de Inmunoglobulinas/genética , Fragmentos Fab de Inmunoglobulinas/inmunología , Fragmentos Fab de Inmunoglobulinas/metabolismo , Inmunoglobulina G/inmunología , Inmunoglobulina G/metabolismo , Región Variable de Inmunoglobulina/genética , Inmunoglobulinas Estimulantes de la Tiroides/metabolismo , Unión Proteica/inmunología , Subunidades de Proteína/inmunología , Subunidades de Proteína/metabolismo , Receptores de Tirotropina/química , Receptores de Tirotropina/inmunología , Receptores de Tirotropina/metabolismo , Proteínas Recombinantes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...