Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 34
1.
Immunity ; 2024 May 29.
Article En | MEDLINE | ID: mdl-38843835

Macrophages elicit immune responses to pathogens through induction of inflammatory genes. Here, we examined the role of three variants of the SWI/SNF nucleosome remodeling complex-cBAF, ncBAF, and PBAF-in the macrophage response to bacterial endotoxin (lipid A). All three SWI/SNF variants were prebound in macrophages and retargeted to genomic sites undergoing changes in chromatin accessibility following stimulation. Cooperative binding of all three variants associated with de novo chromatin opening and latent enhancer activation. Isolated binding of ncBAF and PBAF, in contrast, associated with activation and repression of active enhancers, respectively. Chemical and genetic perturbations of variant-specific subunits revealed pathway-specific regulation in the activation of lipid A response genes, corresponding to requirement for cBAF and ncBAF in inflammatory and interferon-stimulated gene (ISG) activation, respectively, consistent with differential engagement of SWI/SNF variants by signal-responsive transcription factors. Thus, functional diversity among SWI/SNF variants enables increased regulatory control of innate immune transcriptional programs, with potential for specific therapeutic targeting.

2.
Cell ; 2024 May 09.
Article En | MEDLINE | ID: mdl-38754421

Clinical trials have identified ARID1A mutations as enriched among patients who respond favorably to immune checkpoint blockade (ICB) in several solid tumor types independent of microsatellite instability. We show that ARID1A loss in murine models is sufficient to induce anti-tumor immune phenotypes observed in ARID1A mutant human cancers, including increased CD8+ T cell infiltration and cytolytic activity. ARID1A-deficient cancers upregulated an interferon (IFN) gene expression signature, the ARID1A-IFN signature, associated with increased R-loops and cytosolic single-stranded DNA (ssDNA). Overexpression of the R-loop resolving enzyme, RNASEH2B, or cytosolic DNase, TREX1, in ARID1A-deficient cells prevented cytosolic ssDNA accumulation and ARID1A-IFN gene upregulation. Further, the ARID1A-IFN signature and anti-tumor immunity were driven by STING-dependent type I IFN signaling, which was required for improved responsiveness of ARID1A mutant tumors to ICB treatment. These findings define a molecular mechanism underlying anti-tumor immunity in ARID1A mutant cancers.

3.
bioRxiv ; 2024 May 14.
Article En | MEDLINE | ID: mdl-38798655

Inflammation is an essential defense response but operates at the cost of normal functions. Whether and how the negative impact of inflammation is monitored remains largely unknown. Acidification of the tissue microenvironment is associated with inflammation. Here we investigated whether macrophages sense tissue acidification to adjust inflammatory responses. We found that acidic pH restructured the inflammatory response of macrophages in a gene-specific manner. We identified mammalian BRD4 as a novel intracellular pH sensor. Acidic pH disrupts the transcription condensates containing BRD4 and MED1, via histidine-enriched intrinsically disordered regions. Crucially, decrease in macrophage intracellular pH is necessary and sufficient to regulate transcriptional condensates in vitro and in vivo, acting as negative feedback to regulate the inflammatory response. Collectively, these findings uncovered a pH-dependent switch in transcriptional condensates that enables environmental sensing to directly control inflammation, with a broader implication for calibrating the magnitude and quality of inflammation by the inflammatory cost.

6.
Science ; 381(6664): 1316-1323, 2023 09 22.
Article En | MEDLINE | ID: mdl-37733872

Although tumor growth requires the mitochondrial electron transport chain (ETC), the relative contribution of complex I (CI) and complex II (CII), the gatekeepers for initiating electron flow, remains unclear. In this work, we report that the loss of CII, but not that of CI, reduces melanoma tumor growth by increasing antigen presentation and T cell-mediated killing. This is driven by succinate-mediated transcriptional and epigenetic activation of major histocompatibility complex-antigen processing and presentation (MHC-APP) genes independent of interferon signaling. Furthermore, knockout of methylation-controlled J protein (MCJ), to promote electron entry preferentially through CI, provides proof of concept of ETC rewiring to achieve antitumor responses without side effects associated with an overall reduction in mitochondrial respiration in noncancer cells. Our results may hold therapeutic potential for tumors that have reduced MHC-APP expression, a common mechanism of cancer immunoevasion.


Antigens, Neoplasm , Electron Transport Complex II , Electron Transport Complex I , Mitochondria , Neoplasms , Humans , Antigen Presentation , Antigens, Neoplasm/immunology , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism , Electron Transport Complex II/genetics , Electron Transport Complex II/metabolism , Electrons , Gene Knockout Techniques , Histones/metabolism , HSP40 Heat-Shock Proteins/genetics , Melanoma/immunology , Melanoma/pathology , Methylation , Mitochondria/enzymology , Neoplasms/immunology , Neoplasms/pathology , Cell Line, Tumor
7.
Immunity ; 56(6): 1303-1319.e5, 2023 06 13.
Article En | MEDLINE | ID: mdl-37315534

CD8+ T cells provide host protection against pathogens by differentiating into distinct effector and memory cell subsets, but how chromatin is site-specifically remodeled during their differentiation is unclear. Due to its critical role in regulating chromatin and enhancer accessibility through its nucleosome remodeling activities, we investigated the role of the canonical BAF (cBAF) chromatin remodeling complex in antiviral CD8+ T cells during infection. ARID1A, a subunit of cBAF, was recruited early after activation and established de novo open chromatin regions (OCRs) at enhancers. Arid1a deficiency impaired the opening of thousands of activation-induced enhancers, leading to loss of TF binding, dysregulated proliferation and gene expression, and failure to undergo terminal effector differentiation. Although Arid1a was dispensable for circulating memory cell formation, tissue-resident memory (Trm) formation was strongly impaired. Thus, cBAF governs the enhancer landscape of activated CD8+ T cells that orchestrates TF recruitment and activity and the acquisition of specific effector and memory differentiation states.


CD8-Positive T-Lymphocytes , Regulatory Sequences, Nucleic Acid , Chromatin , Nucleosomes , Antiviral Agents
8.
Nat Commun ; 14(1): 292, 2023 01 18.
Article En | MEDLINE | ID: mdl-36653361

Pancreatic cancer is characterized by extensive resistance to conventional therapies, making clinical management a challenge. Here we map the epigenetic dependencies of cancer stem cells, cells that preferentially evade therapy and drive progression, and identify SWI/SNF complex member SMARCD3 as a regulator of pancreatic cancer cells. Although SWI/SNF subunits often act as tumor suppressors, we show that SMARCD3 is amplified in cancer, enriched in pancreatic cancer stem cells and upregulated in the human disease. Diverse genetic mouse models of pancreatic cancer and stage-specific Smarcd3 deletion reveal that Smarcd3 loss preferentially impacts established tumors, improving survival especially in context of chemotherapy. Mechanistically, SMARCD3 acts with FOXA1 to control lipid and fatty acid metabolism, programs associated with therapy resistance and poor prognosis in cancer. These data identify SMARCD3 as an epigenetic modulator responsible for establishing the metabolic landscape in aggressive pancreatic cancer cells and a potential target for new therapies.


Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Mice , Animals , Transcription Factors/genetics , Transcription Factors/metabolism , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Epigenesis, Genetic , Pancreatic Neoplasms
9.
Yale J Biol Med ; 96(4): 467-473, 2023 Dec.
Article En | MEDLINE | ID: mdl-38161581

T cells undergo extensive chromatin remodeling over several days following stimulation through the T cell receptor. However, the kinetics and gene loci targeted by early remodeling events within the first 24 hours of T cell priming to orchestrate effector differentiation have not been well described. We identified that chromatin accessibility is rapidly and extensively remodeled within 1 hour of stimulation of naïve CD8+ T cells, leading to increased global chromatin accessibility at many effector T cell-associated genes that are enriched for AP-1, early growth response (EGR), and nuclear factor of activated T cells (NFAT) binding sites, but this short duration of stimulation is insufficient for commitment to clonal expansion in vivo. Sustained 24-hour stimulation led to further chromatin remodeling and was sufficient to enable clonal expansion. These data suggest that the duration of antigen receptor signaling is intimately coupled to chromatin remodeling and activation of genes involved in effector cell differentiation and highlight a potential mechanism that helps CD8+ T cells discriminate between foreign- and self-antigens.


CD8-Positive T-Lymphocytes , Chromatin Assembly and Disassembly , Humans , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation , Signal Transduction , Chromatin/metabolism
11.
Cell Rep ; 39(4): 110730, 2022 04 26.
Article En | MEDLINE | ID: mdl-35476977

Mammals have limited regenerative capacity, whereas some vertebrates, like fish and salamanders, are able to regenerate their organs efficiently. The regeneration in these species depends on cell dedifferentiation followed by proliferation. We generate a mouse model that enables the inducible expression of the four Yamanaka factors (Oct-3/4, Sox2, Klf4, and c-Myc, or 4F) specifically in hepatocytes. Transient in vivo 4F expression induces partial reprogramming of adult hepatocytes to a progenitor state and concomitantly increases cell proliferation. This is indicated by reduced expression of differentiated hepatic-lineage markers, an increase in markers of proliferation and chromatin modifiers, global changes in DNA accessibility, and an acquisition of liver stem and progenitor cell markers. Functionally, short-term expression of 4F enhances liver regenerative capacity through topoisomerase2-mediated partial reprogramming. Our results reveal that liver-specific 4F expression in vivo induces cellular plasticity and counteracts liver failure, suggesting that partial reprogramming may represent an avenue for enhancing tissue regeneration.


Cellular Reprogramming , Liver , Animals , Cell Dedifferentiation , Hepatocytes/metabolism , Liver/metabolism , Liver Regeneration , Mammals , Mice
12.
Trends Immunol ; 43(4): 265-267, 2022 04.
Article En | MEDLINE | ID: mdl-35283014

Blacher and colleagues have discovered that the circadian patterns of macrophage gene expression and immune function that exist in young mice are disrupted in aging mice. KLF4 was identified as a key transcription factor (TF) regulating rhythmic expression of immune genes, which is lost in old macrophages.


Aging , Circadian Rhythm , Macrophages , Animals , Gene Expression Regulation , Kruppel-Like Factor 4 , Macrophages/cytology , Mice , Transcription Factors/genetics
13.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Article En | MEDLINE | ID: mdl-34983841

Macrophages induce a number of inflammatory response genes in response to stimulation with microbial ligands. In response to endotoxin Lipid A, a gene-activation cascade of primary followed by secondary-response genes is induced. Epigenetic state is an important regulator of the kinetics, specificity, and mechanism of gene activation of these two classes. In particular, SWI/SNF chromatin-remodeling complexes are required for the induction of secondary-response genes, but not primary-response genes, which generally exhibit open chromatin. Here, we show that a recently discovered variant of the SWI/SNF complex, the noncanonical BAF complex (ncBAF), regulates secondary-response genes in the interferon (IFN) response pathway. Inhibition of bromodomain-containing protein 9 (BRD9), a subunit of the ncBAF complex, with BRD9 bromodomain inhibitors (BRD9i) or a degrader (dBRD9) led to reduction in a number of interferon-stimulated genes (ISGs) following stimulation with endotoxin lipid A. BRD9-dependent genes overlapped highly with a subset of genes differentially regulated by BET protein inhibition with JQ1 following endotoxin stimulation. We find that the BET protein BRD4 is cobound with BRD9 in unstimulated macrophages and corecruited upon stimulation to ISG promoters along with STAT1, STAT2, and IRF9, components of the ISGF3 complex activated downstream of IFN-alpha receptor stimulation. In the presence of BRD9i or dBRD9, STAT1-, STAT2-, and IRF9-binding is reduced, in some cases with reduced binding of BRD4. These results demonstrate a specific role for BRD9 and the ncBAF complex in ISG activation and identify an activity for BRD9 inhibitors and degraders in dampening endotoxin- and IFN-dependent gene expression.


Cell Cycle Proteins/metabolism , Interferons/metabolism , Macrophage Activation/drug effects , Transcription Factors/metabolism , Antiviral Agents/pharmacology , Cell Cycle Proteins/genetics , Chromatin Assembly and Disassembly/drug effects , Humans , Interferon-Stimulated Gene Factor 3, gamma Subunit/metabolism , Interferon-alpha/pharmacology , Interferons/genetics , Interferons/pharmacology , Promoter Regions, Genetic/drug effects , Protein Domains , STAT1 Transcription Factor/metabolism , STAT2 Transcription Factor/metabolism , Transcription Factors/genetics , Transcriptional Activation/drug effects
14.
Cancer Discov ; 11(10): 2375-2377, 2021 10.
Article En | MEDLINE | ID: mdl-34598951

Reduced protein expression of the BAF complex (also known as SWI/SNF) tumor suppressor SMARCB1 is frequently observed in human synovial sarcoma, a soft-tissue malignancy driven by the oncogenic SS18-SSX fusion, which competes with wild-type SS18 for BAF complex incorporation. In this issue of Cancer Discovery, Li and Mulvihill reveal that low-expressed SMARCB1 has a functional role in synovial sarcomagenesis in mouse models expressing the SS18-SSX2 fusion and present evidence that SMARCB1 reduction in synovial sarcoma is due to wholesale degradation of canonical BAF complexes.See related article by Li et al., p. 2620.


Sarcoma, Synovial , Animals , Mice , Oncogene Proteins, Fusion/genetics , Sarcoma, Synovial/genetics
16.
Immunity ; 53(1): 143-157.e8, 2020 07 14.
Article En | MEDLINE | ID: mdl-32640256

Regulatory T (Treg) cells play a pivotal role in suppressing auto-reactive T cells and maintaining immune homeostasis. Treg cell development and function are dependent on the transcription factor Foxp3. Here, we performed a genome-wide CRISPR loss-of-function screen to identify Foxp3 regulators in mouse primary Treg cells. Foxp3 regulators were enriched in genes encoding subunits of the SWI/SNF nucleosome-remodeling and SAGA chromatin-modifying complexes. Among the three SWI/SNF-related complexes, the Brd9-containing non-canonical (nc) BAF complex promoted Foxp3 expression, whereas the PBAF complex was repressive. Chemical-induced degradation of Brd9 led to reduced Foxp3 expression and reduced Treg cell function in vitro. Brd9 ablation compromised Treg cell function in inflammatory disease and tumor immunity in vivo. Furthermore, Brd9 promoted Foxp3 binding and expression of a subset of Foxp3 target genes. Our findings provide an unbiased analysis of the genetic networks regulating Foxp3 and reveal ncBAF as a target for therapeutic manipulation of Treg cell function.


CRISPR-Cas Systems/genetics , Forkhead Transcription Factors/metabolism , Neoplasms/immunology , T-Lymphocytes, Regulatory/metabolism , Transcription Factors/metabolism , Animals , Autoimmunity/immunology , Cell Line, Tumor , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Disease Models, Animal , Forkhead Transcription Factors/genetics , Gene Expression Regulation/genetics , HEK293 Cells , Humans , Mice, Inbred C57BL , Mice, Knockout , Nucleosomes/immunology , RNA, Guide, Kinetoplastida/genetics , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/immunology , Transcription Factors/genetics
17.
Nature ; 582(7812): 416-420, 2020 06.
Article En | MEDLINE | ID: mdl-32499641

Regulatory T (Treg) cells are required to control immune responses and maintain homeostasis, but are a significant barrier to antitumour immunity1. Conversely, Treg instability, characterized by loss of the master transcription factor Foxp3 and acquisition of proinflammatory properties2, can promote autoimmunity and/or facilitate more effective tumour immunity3,4. A comprehensive understanding of the pathways that regulate Foxp3 could lead to more effective Treg therapies for autoimmune disease and cancer. The availability of new functional genetic tools has enabled the possibility of systematic dissection of the gene regulatory programs that modulate Foxp3 expression. Here we developed a CRISPR-based pooled screening platform for phenotypes in primary mouse Treg cells and applied this technology to perform a targeted loss-of-function screen of around 500 nuclear factors to identify gene regulatory programs that promote or disrupt Foxp3 expression. We identified several modulators of Foxp3 expression, including ubiquitin-specific peptidase 22 (Usp22) and ring finger protein 20 (Rnf20). Usp22, a member of the deubiquitination module of the SAGA chromatin-modifying complex, was revealed to be a positive regulator that stabilized Foxp3 expression; whereas the screen suggested that Rnf20, an E3 ubiquitin ligase, can serve as a negative regulator of Foxp3. Treg-specific ablation of Usp22 in mice reduced Foxp3 protein levels and caused defects in their suppressive function that led to spontaneous autoimmunity but protected against tumour growth in multiple cancer models. Foxp3 destabilization in Usp22-deficient Treg cells could be rescued by ablation of Rnf20, revealing a reciprocal ubiquitin switch in Treg cells. These results reveal previously unknown modulators of Foxp3 and demonstrate a screening method that can be broadly applied to discover new targets for Treg immunotherapies for cancer and autoimmune disease.


CRISPR-Cas Systems , Forkhead Transcription Factors/metabolism , T-Lymphocytes, Regulatory/metabolism , Animals , Autoimmunity/immunology , Cells, Cultured , Forkhead Transcription Factors/biosynthesis , Gene Editing , Gene Expression Regulation , Humans , Immunotherapy , Male , Mice , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/prevention & control , Protein Stability , Reproducibility of Results , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/immunology , Ubiquitin Thiolesterase/deficiency , Ubiquitin Thiolesterase/metabolism , Ubiquitin-Protein Ligases/deficiency , Ubiquitin-Protein Ligases/metabolism
18.
Trends Immunol ; 41(2): 126-140, 2020 02.
Article En | MEDLINE | ID: mdl-31928914

Epigenetic regulation plays an important role in controlling the activation, timing, and resolution of innate immune responses in macrophages. Previously, SWI/SNF chromatin remodeling was found to define the kinetics and selectivity of gene activation in response to microbial ligands; however, these studies do not reflect a comprehensive understanding of SWI/SNF complex regulation. In 2018, a new variant of the SWI/SNF complex was identified with unknown function in inflammatory gene regulation. Here, we summarize the biochemical and genomic properties of SWI/SNF complex variants and the potential for increased regulatory control of innate immune transcriptional programs in light of such biochemical diversity. Finally, we review the development of SWI/SNF complex chemical inhibitors and degraders that could be used to modulate immune responses.


Chromatin Assembly and Disassembly , Chromosomal Proteins, Non-Histone , Macrophages , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Epigenesis, Genetic , Humans , Macrophages/immunology , Transcription Factors/genetics , Transcription Factors/metabolism
19.
Genes Dev ; 34(21-22): 1407-1409, 2020 11 01.
Article En | MEDLINE | ID: mdl-33872194

Alternative polarization of macrophages induced by IL-4 is important for homeostasis and tissue repair. Downstream from IL-4 receptor signaling, STAT6 activation is transient, but induces stable transcriptional changes. These data suggest that STAT6 induces second messengers to carry out the alternative transcriptional program. In this issue of Genes & Development, Daniel and colleagues (pp. 1474-1492) identify EGR2 as a downstream regulator of STAT6 with broad functionality that further induces many transcription factors associated with alternative polarization. Identification of high EGR2 expression in a subset of mouse and human alveolar macrophages further highlights EGR2 as a conserved marker of alternatively activated macrophages.


Macrophage Activation , Macrophages , Animals , Early Growth Response Protein 2 , Mice , STAT6 Transcription Factor , Signal Transduction
...