Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124117, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38461559

RESUMEN

Cancer's global impact necessitates innovative and less toxic treatments. Thiosemicarbazones (TSCs), adaptable metal chelators, offer such potential. In this study, we have synthesized N (4)-substituted heterocyclic TSCs from syringaldehyde (TSL1, TSL2), and also report the unexpected copper-mediated cyclization of the TSCs to form thiadiazoles (TSL3, TSL4), expanding research avenues. This work includes extensive characterization and studies such as DNA/protein binding, molecular docking, and theoretical analyses to demonstrate the potential of the as-prepared TSCs and thiadiazoles against different cancer cells. The DFT results depict that the thiadiazoles exhibit greater structural stability and reduced reactivity compared to the corresponding TSCs. The docking results suggest superior EGFR inhibition for TSL3 with a binding constant value of - 6.99 Kcal/mol. According to molecular dynamics studies, the TSL3-EGFR complex exhibits a lower average RMSD (1.39 nm) as compared to the TSL1-EGFR complex (3.29 nm) suggesting that both the thiadiazole and thiosemicarbazone examined here can be good inhibitors of EGFR protein, also that TSL3 can inhibit EGFR better than TSL1. ADME analysis indicates drug-likeness and oral availability of the thiadiazole-based drugs. The DNA binding experiment through absorption and emission spectroscopy discovered that TSL3 is more active towards DNA which is quantitatively calculated with a Kb value of 4.74 × 106 M-1, Kq value of 4.04 × 104 M-1and Kapp value of 5 × 106 M-1. Furthermore, the BSA binding studies carried out with fluorescence spectroscopy showed that TSL3 shows better binding capacity (1.64 × 105 M-1) with BSA protein. All the compounds show significant cytotoxicity against A459-lung, MCF-7-breast, and HepG2-liver cancer cell lines; TSL3 exhibits the best cytotoxicity, albeit less effective than cisplatin. Thiadiazoles demonstrate greater cytotoxicity than the TSCs. Overall, the promise of TSCs and thiadiazoles in cancer research is highlighted by this study. Furthermore, it unveils unexpected copper-mediated cyclization of the TSCs to thiadiazoles.


Asunto(s)
Antineoplásicos , Tiadiazoles , Tiosemicarbazonas , Simulación del Acoplamiento Molecular , Teoría Funcional de la Densidad , Cobre/farmacología , Cobre/química , Tiosemicarbazonas/farmacología , Tiosemicarbazonas/química , Ciclización , Tiadiazoles/farmacología , Tiadiazoles/química , Espectrometría de Fluorescencia , ADN/química , Receptores ErbB/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química
2.
Heliyon ; 10(1): e24077, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38234888

RESUMEN

A novel Coumarin-based 1,2-pyrazole, HCPyTSC is synthesised and characterized. The chemosensor has been shown to have efficient colourimetric and fluorescence sensing capabilities for the quick and selective detection of fluoride and copper ions. At 376 and 430 nm, the HCPyTSC exhibits selective sensing for Cu2+ and F- ions. By examining the natural bond orbital (NBO) analysis and the potential energy curve (PES) of the ground state for the function of the C-H bond, it has been determined from the theoretical study at hand that the deprotonation was taken from the 'CH' proton of the pyrazole ring. For F- and Cu2+, the HCPyTSC detection limits were 4.62 nM and 15.36 nM, respectively. Similarly, the binding constants (Kb) for F- and Cu2+ ions in acetonitrile medium were found to be 2.06 × 105 M-1 and 1.88 × 105 M-1. Chemosensor HCPyTSC with and without F- and Cu2+ ions have an emission and absorption response that can imitate a variety of logic gates, including the AND, XOR, and OR gates. Additionally, a paper-based sensor strip with the HCPyTSC was created for use in practical, flexible F- sensing applications. The paper-based sensor was more effective in detecting F- than other anions. The effectiveness of HCPyTSC for the selective detection of F- in living cells as well as its cell permeability were examined using live-cell imaging in T24 cells.

3.
J Fluoresc ; 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37995072

RESUMEN

A novel probe ITQ (9-(((E)-1 H-inden-1-ylidene)methyl)-8-(3-(((E)-1 H-inden-1-ylidene)methyl)phenoxy)-2,3,6,7-tetrahydro-1 H,5 H-pyrido[3,2,1ij]quinolone) was successfully designed and synthesized to detect amino acid lysine (Lys). The selective sensing behavior of the probe ITQ was observed using absorption and emission spectral results. Further, the probe ITQ exhibits a strong binding affinity for Lys [1.4 × 104 M- 1] and detects and quantifies Lys even in its nanomolar concentration. Moreover, the probe ITQ detects Lys at 1:2 binding stoichiometry with suitable biological pH [4-11]. Furthermore, the probe ITQ was also successfully utilized to detect Lys in tablets, real samples (avocado, soyabean and pork) and in live HeLa cells.

4.
ACS Omega ; 8(35): 31600-31619, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37692216

RESUMEN

Catalysts played a crucial role in advancing modern human civilization, from ancient times to the industrial revolution. Due to high cost and limited availability of traditional catalysts, there is a need to develop cost-effective, high-activity, and nonprecious metal-based electrocatalysts. Metal-organic frameworks (MOFs) have emerged as an ideal candidate for heterogeneous catalysis due to their physicochemical properties, hybrid inorganic/organic structures, uncoordinated metal sites, and accessible organic sections. MOFs are high nanoporous crystalline materials that can be used as catalysts to facilitate polymerization reactions. Their chemical and structural diversity make them effective for various reactions compared to traditional catalysts. MOFs have been applied in gas storage and separation, ion-exchange, drug delivery, luminescence, sensing, nanofilters, water purification, and catalysis. The review focuses on MOF-enabled heterogeneous catalysis for value-added compound production, including alcohol oxidation, olefin oligomerization, and polymerization reactions. MOFs offer tunable porosity, high spatial density, and single-crystal XRD control over catalyst properties. In this review, MOFs were focused on reactions of CO2 fixation, CO2 reduction, and photoelectrochemical water splitting. Overall, MOFs have great potential as versatile catalysts for diverse applications in the future.

5.
J Fluoresc ; 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37642776

RESUMEN

A novel fluorescence chemosensor BDP (2-(1-(benzothiazol-2-yl)-5-(4-(diphenylamino)phenyl)-4,5-dihydro-1H-pyrazol-3-yl)phenol) has been synthesized and its sensing behavior has been screened towards various cations by absorption, emission and mass spectroscopic techniques. The probe BDP detects Cu2+ ions preferentially over other metal ions, and the resulting BDP-Cu2+ ensemble acts as a secondary sensor for cyanide anion detection over other anions. The fluorescence intensity of the probe BDP is quenched when it comes into contact with Cu2+ ions, but it is increased reversibly when it comes into contact with cyanide anion, according to spectroscopic measurements. Along with this, optical studies indicate that the sensor BDP has capability to sense Cu2+ and CN- ions selectively over other examined competitive ions with the LOD of 2.57×10-8 M and 2.98×10-8 M respectively. The detection limit of Cu2+ ions is lower than the WHO recommended Cu2+ ions concentration (31.5 µM) in drinking water. On the basis of "on-off-on" fluorescence change of the probe BDP upon interaction with Cu2+ and CN- ions, a possible mechanism for this selective sensing behavior was presented and IMPLICATION logic gate was successfully designed. Furthermore, cell imaging investigations were used to investigate the probe BDP's biological applicability.

6.
Int J Mol Sci ; 24(15)2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37569273

RESUMEN

Cisplatin-based chemotherapy is a common regimen for bladder cancer, a life-threatening cancer with more than 500,000 new cases worldwide annually. Like many other metallodrugs, cisplatin causes severe side effects for its general toxicity. Organoruthenium is known for its structural stability, good anticancer activity, and possible low general toxicity. Here, we have prepared and characterized a series of water-soluble ruthenium-arene complexes with N,N'-chelating ligands: [Ru(II)-η6-arene-(4,4'-(X)2-2,2'-bipyridine)Cl]Cl (arene = p-cymene, X = C4H9 (1), COOH (2), COOCH3 (3), COOC2H5 (4); arene = benzene, X = C4H9 (5), COOCH3 (6), COOC2H5 (7)). These complexes are carefully characterized using single-crystal X-ray diffraction, UV-vis, IR, 1H NMR, and MALDI-TOF MS spectroscopy. Their DFT-calculated structural and thermodynamic properties are consistent with the experimental observations. Biophysicochemical studies of complex interaction with CTDNA and BSA supported by molecular docking simulations reveal suitable properties of 1-7 as anticancer agents. Cytotoxicities of 1-7 are evaluated on healthy human MCF-10a-breast epithelial and African green monkey Vero cells, and carcinoma human HepG-2-hepatic, T24-bladder, and EAhy-926-endothelial cells. All complexes exhibit much higher cytotoxicity for T24 than cisplatin. Particularly, 1 and 2 are also highly selective toward T24. Fluorescence imaging and flow cytometry demonstrate that 1 and 2 penetrate T24 cell membrane and induce early apoptosis at their respective IC50 concentrations, which ultimately lead to cell death. Statistical analysis suggests that the order of importance for T24 cell antiproliferation is protein binding, Log p, Ru-Cl bond length, while DNA binding is the least important. This study is the first to report the anti-bladder cancer efficacy of Ru-arene-2,2'-bipyridine complexes, and may provide insights for rational design of organoruthenium drugs in the enduring search for new chemotherapeutic agents.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Rutenio , Neoplasias de la Vejiga Urinaria , Animales , Humanos , Chlorocebus aethiops , Cisplatino/farmacología , 2,2'-Dipiridil , Complejos de Coordinación/química , Simulación del Acoplamiento Molecular , Ligandos , Células Vero , Células Endoteliales/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Rutenio/química , Línea Celular Tumoral
7.
Inorg Chem ; 62(30): 11761-11774, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37459067

RESUMEN

Half-sandwich Ru(II) complexes containing nitro-substituted furoylthiourea ligands, bearing the general formula [(η6-p-cymene)RuCl2(L)] (1-6) and [(η6-p-cymene)RuCl(L)(PPh3)]+ (7--12), have been synthesized and characterized. In contrast to the spectroscopic data which revealed monodentate coordination of the ligands to the Ru(II) ion via a "S" atom, single crystal X-ray structures revealed an unusual bidentate N, S coordination with the metal center forming a four-membered ring. Interaction studies by absorption, emission, and viscosity measurements revealed intercalation of the Ru(II) complexes with calf thymus (CT) DNA. The complexes showed good interactions with bovine serum albumin (BSA) as well. Further, their cytotoxicity was explored exclusively against breast cancer cells, namely, MCF-7, T47-D, and MDA-MB-231, wherein all of the complexes were found to display more pronounced activity than their ligand counterparts. Complexes 7-12 bearing triphenylphosphine displayed significant cytotoxicity, among which complex 12 showed IC50 values of 0.6 ± 0.9, 0.1 ± 0.8, and 0.1 ± 0.2 µM against MCF-7, T47-D, and MDA-MB-231 cell lines, respectively. The most active complexes were tested for their mode of cell death through staining assays, which confirmed apoptosis. The upregulation of apoptotic inducing and downregulation of apoptotic suppressing proteins as inferred from the western blot analysis also corroborated the apoptotic mode of cell death. The active complexes effectively generated reactive oxygen species (ROS) in MDA-MB-231 cells as analyzed from the 2',7'-dichlorofluorescein diacetate (DCFH-DA) staining. Finally, in vivo studies of the highly active complexes (6 and 12) were performed on the mice model. Histological analyses revealed that treatment with these complexes at high doses of up to 8 mg/kg did not induce any visible damage to the tested organs.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Neoplasias , Rutenio , Animales , Ratones , Ligandos , Complejos de Coordinación/química , Cimenos/farmacología , Cimenos/química , Apoptosis , Antineoplásicos/química , Rutenio/farmacología , Rutenio/química , Línea Celular Tumoral
8.
Adv Colloid Interface Sci ; 316: 102908, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37148581

RESUMEN

Metal-organic frameworks (MOFs), also called porous coordination polymers, represent a class of crystalline porous materials made up of organic ligands and metal ions/metal clusters. Herein, an overview of the preparation of different metal-organic frameworks and the recent advances in MOF-based stimuli-responsive drug delivery systems (DDSs) with the drug release mechanisms including pH-, temperature-, ion-, magnetic-, pressure-, adenosine-triphosphate (ATP)-, H2S-, redox-, responsive, and photoresponsive MOF were rarely introduced. The combination therapy containing of two or more treatments can be enhanced treatment effectiveness through overcoming limitations of monotherapy. Photothermal therapy (PTT) combined with chemotherapy (CT), chemotherapy in combination with PTT or other combinations were explained to overcome drug resistance and side effects in normal cells as well as enhancing the therapeutic response. Integrated platforms containing of photothermal/drug-delivering functions with magnetic resonance imaging (MRI) properties exhibited great advantages in cancer therapy.


Asunto(s)
Estructuras Metalorgánicas , Estructuras Metalorgánicas/farmacología , Estructuras Metalorgánicas/química , Sistemas de Liberación de Medicamentos , Metales
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 295: 122607, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-36921522

RESUMEN

A simple D - A (donor - acceptor) type receptor ((2E, 2'E)-3, 3'-(10-octyl-10H-phenothiazine-3,7-diyl)bis(2-(benzo[d]thiazol-2-yl)acrylonitrile)) (PBTA) containing nitrile-vinyl linkage was designed and completely characterized. The receptor PBTA detects CN- ions based on "turn-off" effect with admirable spectral properties. It also owns some of the merits like "naked-eye" color change, ultrafast response (90 s), lowest detection limit (1.25 × 10-10 M) as well as quantitation limit (4.17 × 10-10 M) with the pH range 4-11 which is more suitable pH to make use of the receptor PBTA in physiological medium. The instant detecting ability of the receptor over CN- ions was proved using paper test strip and cotton balls. Further, the utilization of the receptor PBTA was also extended to track CN- ions in realistic samples (water and food samples) and in HeLa cells bioimaging.


Asunto(s)
Cianuros , Nitrilos , Humanos , Células HeLa , Agua/química , Colorantes Fluorescentes/química
10.
Inorg Chem ; 62(8): 3679-3691, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36780329

RESUMEN

We set out to design and synthesize bipodal ligands with the phenyl group as the spacer and varied the substitution on the spacer between ortho (L1), meta (L2), and para (L3). The respective ligands and complexes containing either p-cymene (PL1-PL3) or benzene (BL1-BL3) as the arene unit were synthesized and characterized successfully. The influence of the ligands due to substitution change on their coordination behavior was quite minimal; however, the differences were seen in the anticancer activity of the complexes. DFT studies revealed the structural variations between the three different substitutions, which was further confirmed by single-crystal X-ray diffraction studies. The anticancer activity of the complexes could be correlated with their rate of hydrolysis and their lipophilicity index as determined by UV-visible spectroscopy. The cell death mechanism of the active complexes was deduced to be apoptotic via staining assays, flow cytometry, and Western blot analysis.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Rutenio , Línea Celular Tumoral , Antineoplásicos/química , Complejos de Coordinación/química , Ligandos , Cimenos , Rutenio/química
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 293: 122447, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36764167

RESUMEN

A colorimetric probe TQA ((E)-4-(((8-(sec-butoxy)-2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinolin-9-yl)methylene)amino)benzylacrylate) possessing greater potent towards the sensing of cysteine was successfully synthesized and characterized. The aqueous soluble probe TQA detects Cys based on "ON-OFF" effect with excellent absorbance and emission properties. The probe TQA detects Cys up to its ultra-low level concentration of 1.5 nM and also quantifies the Cys up to 5.05 nM with the quicker response time of 140 s (2.3 min). In addition, the color change produced by the probe TQA on integrated with Cys was also identified easily via paper strip, cotton wool buds and RGB color picker app in smart mobiles. Further, the admirable selectivity and sensitivity of the probe TQA towards Cys extends its utility towards food samples and imaging of live HeLa cells.


Asunto(s)
Cisteína , Agua , Humanos , Células HeLa , Acrilatos , Colorantes Fluorescentes
12.
ACS Omega ; 7(37): 33248-33257, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36157778

RESUMEN

A pyrene-based fluorescent chemosensor APSB [N-(pyrene-1-ylmethylene) anthracen-2-amine] was designed and developed by a simple condensation reaction between pyrene carboxaldehyde and 2-aminoanthracene. The APSB fluorescent sensor selectively binds Fe3+ in the presence of other metal ions. Apart from this, APSB shows high selectivity and sensitivity toward Fe3+ ion detection. The detection limit for APSB was 1.95 nM, and the binding constant (K b) was obtained as 8.20 × 105 M-1 in DMSO/water (95/5, v/v) medium. The fluorescence quantum yields for APSB and APSB-Fe3+ were calculated as 0.035 and 0.573, respectively. The function of this fluorescent sensor APSB can be explained through the photo-induced electron transfer mechanism which was further proved by density functional theory studies. Finally, a live-cell image study of APSB in HeLa cells was also carried out to investigate the cell permeability of APSB and its efficiency for selective detection of Fe3+ in living cells.

13.
J Inorg Biochem ; 233: 111843, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35500349

RESUMEN

Acylthiourea-based Pd(II) complexes (1-5) with a PPh3 moiety bearing the general formula [PdCl(PPh3)(L-R)] [L-R = monoanionic bidentate acylthiourea ligand, where R = C6H5 (L1), C6H4CH3(o) (L2), C6H4OCH2CH3(p) (L3), C10H7 (L4) or C6H4Cl (L5)] have been synthesized and characterized by spectroscopic and analytical tools. The single crystal X-ray structures (1-3) revealed that the acylthiourea ligands coordinated to Pd(II) ion in an uncommon bidentate fashion through S and N atoms, forming a four-member ring. The Pd(II) ion exhibited a square planar geometry fulfilled by the ligand (N, S), one Cl- and one triphenylphosphine (PPh3). Calf thymus (CT) DNA and bovine serum albumin (BSA) binding of the complexes have been analyzed by spectroscopic and molecular docking studies. The complexes were tested for their in vitro cytotoxicity on three cancer (cervical, breast and lung) and one normal (human embryo) cell lines. Complex 4 bearing the naphthalene substitution exhibited the highest activity against three cancer cells with the half-maximal inhibitory concentration (IC50) values of 8.6 (cervical), 8.8 (breast) and 9.4 µM (lung). The acridine orange/ethidium bromide (AO/EB) and 4',6-diamidino-2-phenylindole (DAPI) staining assays indicated that 4 induced cancer cell death through apoptosis. Among the complexes, 4 exhibited the highest 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity of 86.19%. All the complexes were subjected to the hemolysis assay which revealed their biocompatibility with red blood cells (RBCs) with a lysis rate of less than 5 %.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Neoplasias , Antineoplásicos/química , Antioxidantes/química , Antioxidantes/farmacología , Línea Celular Tumoral , Complejos de Coordinación/metabolismo , Complejos de Coordinación/farmacología , Humanos , Plomo , Ligandos , Simulación del Acoplamiento Molecular , Albúmina Sérica Bovina/química
14.
Environ Pollut ; 301: 119036, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35202765

RESUMEN

In this work, we report a facile receptor OMB [N',N"'-(3-((4-oxochroman-3-yl)methylene)pentane-2,4- diylidene)bis(4-methoxybenzohydrazide)] for the simultaneous detection of toxic analytes (Hg2+ and Cd2+ ions) in environment and biological samples. The receptor OMB exhibits an excellent selectivity and sensitivity which was determined using absorption and emission spectra. The receptor OMB shows rapid detection with lowest LOD (0.62 nM for Hg2+ ions and 0.77 nM for Cd2+ ions) and LOQ (2.08 nM for Hg2+ ions and 2.57 nM for Cd2+ ions) values. In addition, the receptor OMB exhibits 1:1 binding stoichiometry towards Hg2+ and Cd2+ ions with binding constant values of 5.5 × 106 M-1 and 4.6 × 106 M-1. Moreover, the synthesized receptor OMB possess ability to detect these analytes (Hg2+ and Cd2+ ions) in realistic samples (food and water) which was recognized using photoluminescence spectroscopy technique. In addition, the receptor OMB is also utilized to detect both the analytes in live HeLa cells. Thus, the overall results indicate that the receptor OMB was more suitable to detect the toxic analytes (Hg2+ and Cd2+ ions) present in the environment.


Asunto(s)
Cadmio , Hidrazinas/química , Mercurio , Cadmio/análisis , Células HeLa , Humanos , Iones , Mercurio/análisis
15.
J Mol Struct ; 1250: 131782, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34697505

RESUMEN

Two heterocyclic azole compounds, 3-(2,3-dihydrobenzo[d]thiazol-2-yl)-4H-chromen-4-one (SVS1) and 5-(1H-indol-3-yl)-4-methyl-2,4-dihydro-3H-1,2,4-triazole-3-thione (SVS2) were obtained unexpectedly from 2-aminothiophenol and 4-oxo-4H-chromene-3-carbaldehyde (for SVS1), and (E)-2-((1H-indol-3-yl)methylene)-N-methylhydrazine-1-carbothioamide in the presence of anhydrous FeCl3 (for SVS2), respectively. The compounds were well characterized by analytical and spectroscopic tools. The molecular structures of both the compounds were determined by single crystal X-ray diffraction (XRD) study. The results obtained from density functional theory (DFT) study revealed the molecular geometry and electron distribution of the compounds, which were correlated well with the three-dimensional structures obtained from the single crystal XRD. DMol3 was used to calculate quantum chemical parameters [chemical potential (µ), global hardness (η), global softness (σ), absolute electronegativity (χ) and electrophilicity index (ω)] of SVS1 and SVS2. Molecular docking study was performed to elucidate the binding ability of SVS1 and SVS2 with SARS-CoV-2 main protease and human angiotensin-converting enzyme-2 (ACE-2) molecular targets. Interestingly, the binding efficiency of the compounds with the molecular targets was comparable with that of remdesivir (SARS-CoV-2), chloroquine and hydroxychloroquine. SVS1 showed better docking energy than SVS2. The molecular docking study was complemented by molecular dynamics simulation study of SARS-CoV-2 main protease-SVS1 complex, which further exemplified the binding ability of SVS1 with the target. In addition, SVS1, SVS2 and cisplatin were assessed for their cytotoxicity against a panel of three human cancer cells such as HepG-2 (hepatic carcinoma), T24 (bladder) and EA.hy926 (endothelial), as well as Vero (kidney epithelial cells extracted from an African green monkey) normal cells using MTT assay. The results showed that SVS2 has significant cytotoxicity against HepG-2 and EA.hy926 cells with the IC50 values of 33.8 µM (IC50 = 49.9 µM-cisplatin and 8.6 µM-doxorubicin) and 29.2 (IC50 = 26.6 µM-cisplatin and 3.8 µM-doxorubicin), respectively.

16.
Anal Methods ; 14(1): 58-66, 2021 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-34889907

RESUMEN

Two novel fluorescent probes, namely, 3-(2,4-dinitrophenoxy)-2-(4-(diphenylamino)phenyl)-4H-chromen-4-one (P1) and 3-(2,4-dinitrophenoxy)-2-(pyren-1-yl)-4H-chromen-4-one (P2), were designed and synthesized here. The probes (P1 and P2) were found to be highly selective and sensitive toward hydrogen sulfide (H2S) in the presence of a wide range of anions. The new probes (P1 and P2) were fully characterized by analytical, NMR spectroscopy (1H and 13C), and ESI mass spectrometry. The sensing capability of chemodosimeters (P1 and P2) toward H2S was confirmed by fluorescence studies. The 'turn-on' fluorescence was used to calculate the detection limit of probes (LOD), which were found to be 2.4 and 1.2 µM for P1 and P2, respectively. Moreover, the probes were tested for their cytotoxicity against HeLa cells using the MTT assay and found to be non-cytotoxic in nature; hence, the probes P1 and P2 were successfully utilized to visualize H2S in the living cells.


Asunto(s)
Dinitrobencenos , Sulfuro de Hidrógeno , Éter , Éteres , Colorantes Fluorescentes/química , Células HeLa , Humanos , Sulfuro de Hidrógeno/análisis
17.
Inorg Chem Commun ; 134: 109029, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34729032

RESUMEN

A water-soluble binuclear organometallic Ru-p-cymene complex [Ru(η6-p-cymene)(η2-L)]2 (1) was prepared from (E)-2-((1H-indol-3-yl)methylene)-N-phenylhydrazine-1-carbothioamide (HL) and [RuCl2(p-cymene)]2 in methanol at room temperature under inert atmosphere. The structure of binuclear complex was analyzed by UV-Visible, FT-IR, NMR and mass spectroscopic methods. The solid-state structure of the complex was ascertained by single crystal X-ray diffraction technique. The complex exhibited pseudo-octahedral (piano-stool) geometry around Ru(II) ion. The cytotoxic property of the ligand and complex along with cisplatin was investigated against A549-lung, MCF-7-breast, HeLa-cervical, HepG-2-liver, T24-urinary bladder and EA.hy926-endothelial cancer cells, and Vero-kidney epithelial normal cells. The complex exhibited superior activity than cisplatin against A549, HeLa and T24 cancer cells with the IC50 values of 7.70, 11.2, and 5.05 µM, respectively. The complexes were cytotoxic specifically to the cancer cells. Molecular docking studies showed good binding potential of the ligand and complex with the spike protein and main protease of SARS-CoV-2, indicating the promising role of these compounds as antiviral compounds.

18.
Molecules ; 26(22)2021 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-34834120

RESUMEN

In our previous paper, we reported that amphiphilic Ir complex-peptide hybrids (IPHs) containing basic peptides such as KK(K)GG (K: lysine, G: glycine) (e.g., ASb-2) exhibited potent anticancer activity against Jurkat cells, with the dead cells showing a strong green emission. Our initial mechanistic studies of this cell death suggest that IPHs would bind to the calcium (Ca2+)-calmodulin (CaM) complex and induce an overload of intracellular Ca2+, resulting in the induction of non-apoptotic programmed cell death. In this work, we conduct a detailed mechanistic study of cell death induced by ASb-2, a typical example of IPHs, and describe how ASb-2 induces paraptotic programmed cell death in a manner similar to that of celastrol, a naturally occurring triterpenoid that is known to function as a paraptosis inducer in cancer cells. It is suggested that ASb-2 (50 µM) induces ER stress and decreases the mitochondrial membrane potential (ΔΨm), thus triggering intracellular signaling pathways and resulting in cytoplasmic vacuolization in Jurkat cells (which is a typical phenomenon of paraptosis), while the change in ΔΨm values is negligibly induced by celastrol and curcumin. Other experimental data imply that both ASb-2 and celastrol induce paraptotic cell death in Jurkat cells, but this induction occurs via different signaling pathways.


Asunto(s)
Calcio/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Iridio/farmacología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Células A549 , Apoptosis/efectos de los fármacos , Calmodulina/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Curcumina/farmacología , Retículo Endoplásmico/metabolismo , Células HeLa , Humanos , Células Jurkat , Células K562 , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Triterpenos Pentacíclicos/farmacología , Transducción de Señal/efectos de los fármacos , Triterpenos/farmacología , Células U937
19.
Dalton Trans ; 50(44): 16311-16325, 2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34730582

RESUMEN

Six different acylthiourea ligands (L1-L6) and their corresponding Ru(II)-p-cymene complexes (P1-P6) were designed to explore the structure-activity relationship of the complexes upon aliphatic chain and aromatic conjugation on the C- and N-terminals, respectively. The compounds were synthesized and adequately characterized using various analytical and spectroscopic techniques. The structures of P2-P6, solved using single crystal X-ray diffraction (XRD), confirmed the neutral monodentate coordination of the S atoms of the acylthiourea ligands to Ru(II) ions. In silico studies showed an increase of lipophilicity for the ligands with an increase in alkyl chain length or aromatic conjugation at the C- or N-terminal, respectively. Subsequently, mitogen-activated protein kinases (MAPK) were predicted as one of the primary targets for the complexes, which showed good binding affinity towards extracellular signal-regulated kinases (ERK1, ERK2 and ERK5), c-Jun N-terminal kinase (JNK) and p38 of the MAPK pathway. Henceforth, the complexes were tested for their anticancer activity in lung carcinoma (A549) and cisplatin-resistant lung carcinoma (cisA549R) cells and human umbilical vein epithelial normal cells (HUVEC). Interestingly, an increase in chain length or aromatic conjugation led to an increase in the activity of the complexes, with P5 (7.73 and 13.04 µM) and P6 (6.52 and 14.45 µM) showing the highest activity in A549 and cisA549R cells, which is better than the positive control, cisplatin (8.72 and 44.28 µM). Remarkably, we report the highest activity yet observed for complexes of the type [(η6-p-cymene)RuIICl2(S-acylthiourea)] in the tested cell lines. Aqueous solution studies showed that complexes P5 and P6 are rapidly hydrolyzed to produce solely aquated species that remained stable for 24 h. Staining assays and flow cytometric analyses of P5 and P6 in A549 cells revealed that the complexes induced apoptosis and arrested the cell cycle predominantly in the S phase. In vivo studies demonstrated the higher toxicity of cisplatin and a comparatively higher survival rate of mice injected with the most active complex P6. Histological analyses revealed that treatment with P6 at high doses of up to 8 mg kg-1 did not cause any palpable damage to the tested organs.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Cimenos , Rutenio , Tioamidas , Tiourea , Células A549 , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Antineoplásicos/farmacocinética , Apoptosis/efectos de los fármacos , Disponibilidad Biológica , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación/administración & dosificación , Complejos de Coordinación/química , Complejos de Coordinación/farmacocinética , Cimenos/administración & dosificación , Cimenos/química , Cimenos/farmacocinética , Femenino , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Absorción Intestinal , Ligandos , Masculino , Ratones Endogámicos ICR , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Simulación del Acoplamiento Molecular , Rutenio/administración & dosificación , Rutenio/química , Rutenio/farmacocinética , Tioamidas/administración & dosificación , Tioamidas/química , Tioamidas/farmacocinética , Tiourea/administración & dosificación , Tiourea/química , Tiourea/farmacocinética
20.
Eur Biophys J ; 50(8): 1069-1081, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34455461

RESUMEN

The sensitivity of protein molecular structures makes them susceptible to aggregation in conditions unfavorable for the maintenance of their native folds. The aggregation of proteins leads to many disorders, but the inhibition of amyloid fibril formation using metal-containing small molecules is gaining popularity. Herein we report the effect of nickel(II) complexes (N1, N2, N3, and N4) bearing thiosemicarbazones on the inhibition of amyloid fibril formation by insulin. The interactions of the complexes with amyloid fibrils were investigated using various biophysical techniques, including light scattering, intrinsic fluorescence assay, thioflavin T (ThT) assay, and Fourier transform-infrared spectroscopy. The results revealed that the phenyl-substituted N3 was an efficient inhibitor of amyloid fibril formation and maintained the insulin in its native structure despite conditions promoting fibrillation. Nickel(II) complexes containing indole based thiosemicarbazones were efficient in inhibiting the amyloid fibril formation and maintaining the insulin in its native structure in unfavorable conditions.


Asunto(s)
Amiloide , Tiosemicarbazonas , Fluorescencia , Insulina , Níquel , Tiosemicarbazonas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...