Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Mol Ther Nucleic Acids ; 35(2): 102230, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38938759

RESUMEN

Small interfering RNAs (siRNAs) are revolutionizing the treatment of liver-associated indications. Yet, robust delivery to extrahepatic tissues remains a challenge. Conjugating lipids (e.g., docosanoic acid [DCA]) to siRNA supports extrahepatic delivery, but tissue accumulation remains lower than that achieved in liver by approved siRNA therapeutics. Early evidence suggests that functionalizing DCA with a head group (e.g., phosphatidylcholine [PC]) may enhance delivery to certain tissues. Here, we report the first systematic evaluation of the effect of PC head group chemistry on the extrahepatic distribution of DCA-conjugated siRNAs. We show that functionalizing DCA with a PC head group enhances siRNA accumulation in heart, muscle, lung, pancreas, duodenum, urinary bladder, and fat. Varying the size of the linker between the phosphate and choline moiety of the PC head group altered the extrahepatic accumulation of siRNA, with the optimal linker length being different for different tissues. Increasing PC head group valency also improved extrahepatic accumulation in a tissue-specific manner. This study demonstrates the structural impact of the PC moiety on the biodistribution of lipid-conjugated siRNA and introduces multiple novel PC variants for the chemical optimization of DCA-conjugated siRNA. These chemical variants can be used in the context of other lipids to increase the repertoire of conjugates for the extrahepatic distribution of siRNAs.

2.
Mol Ther Nucleic Acids ; 34: 102080, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38089931

RESUMEN

Although an increasing number of small interfering RNA (siRNA) therapies are reaching the market, the challenge of efficient extra-hepatic delivery continues to limit their full therapeutic potential. Drug delivery vehicles and hydrophobic conjugates are being used to overcome the delivery bottleneck. Previously, we reported a novel dendritic conjugate that can be appended efficiently to oligonucleotides, allowing them to bind albumin with nanomolar affinity. Here, we explore the ability of this novel albumin-binding conjugate to improve the delivery of siRNA in vivo. We demonstrate that the conjugate binds albumin exclusively in circulation and extravasates to various organs, enabling effective gene silencing. Notably, we show that the conjugate achieves a balance between hydrophobicity and safety, as it significantly reduces the side effects associated with siRNA interactions with blood components, which are commonly observed in some hydrophobically conjugated siRNAs. In addition, it reduces siRNA monocyte uptake, which may lead to cytokine/inflammatory responses. This work showcases the potential of using this dendritic conjugate as a selective albumin binding handle for the effective and safe delivery of nucleic acid therapeutics. We envision that these properties may pave the way for new opportunities to overcome delivery hurdles of oligonucleotides in future applications.

3.
Proc Natl Acad Sci U S A ; 120(11): e2219523120, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36893269

RESUMEN

The continuous evolution of SARS-CoV-2 variants complicates efforts to combat the ongoing pandemic, underscoring the need for a dynamic platform for the rapid development of pan-viral variant therapeutics. Oligonucleotide therapeutics are enhancing the treatment of numerous diseases with unprecedented potency, duration of effect, and safety. Through the systematic screening of hundreds of oligonucleotide sequences, we identified fully chemically stabilized siRNAs and ASOs that target regions of the SARS-CoV-2 genome conserved in all variants of concern, including delta and omicron. We successively evaluated candidates in cellular reporter assays, followed by viral inhibition in cell culture, with eventual testing of leads for in vivo antiviral activity in the lung. Previous attempts to deliver therapeutic oligonucleotides to the lung have met with only modest success. Here, we report the development of a platform for identifying and generating potent, chemically modified multimeric siRNAs bioavailable in the lung after local intranasal and intratracheal delivery. The optimized divalent siRNAs showed robust antiviral activity in human cells and mouse models of SARS-CoV-2 infection and represent a new paradigm for antiviral therapeutic development for current and future pandemics.


Asunto(s)
COVID-19 , Humanos , Animales , Ratones , ARN Interferente Pequeño/genética , COVID-19/terapia , SARS-CoV-2/genética , Antivirales/farmacología , Antivirales/uso terapéutico , Oligonucleótidos , Pulmón
4.
Mol Ther Nucleic Acids ; 29: 135-149, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-35847173

RESUMEN

Preeclampsia (PE) is a rising, potentially lethal complication of pregnancy. PE is driven primarily by the overexpression of placental soluble fms-like tyrosine kinase 1 (sFLT1), a validated diagnostic and prognostic marker of the disease when normalized to placental growth factor (PlGF) levels. Injecting cholesterol-conjugated, fully modified, small interfering RNAs (siRNAs) targeting sFLT1 mRNA into pregnant mice or baboons reduces placental sFLT1 and ameliorates clinical signs of PE, providing a strong foundation for the development of a PE therapeutic. siRNA delivery, potency, and safety are dictated by conjugate chemistry, siRNA duplex structure, and chemical modification pattern. Here, we systematically evaluate these parameters and demonstrate that increasing 2'-O-methyl modifications and 5' chemical stabilization and using sequence-specific duplex asymmetry and a phosphocholine-docosanoic acid conjugate enhance placental accumulation, silencing efficiency and safety of sFLT1-targeting siRNAs. The optimization strategy here provides a framework for the chemical optimization of siRNAs for PE as well as other targets and clinical indications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...