Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(5)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38473489

RESUMEN

The key technological implementation of sodium-ion batteries is converting biomass-derived hard carbons into effective anode materials. This becomes feasible if appropriate knowledge of the relations between the structure of carbonized biomass products, the mineral ash content in them, and Na storage properties is gained. In this study, we examine the simultaneous impact of the ash phase composition and carbon structure on the Na storage properties of hard carbons derived from spent coffee grounds (SCGs). The carbon structure is modified using the pre-carbonization of SCGs at 750 °C, followed by annealing at 1100 °C in an Ar atmosphere. Two variants of the pre-carbonization procedure are adopted: the pre-carbonization of SCGs in a fixed bed and CO2 flow. For the sake of comparison, the pre-carbonized products are chemically treated to remove the ash content. The Na storage performance of SCG-derived carbons is examined in model two and three Na-ion cells. It was found that ash-containing carbons outperformed the ash-free analogs with respect to cycling stability, Coulombic efficiency, and rate capability. The enhanced performance is explained in terms of the modification of the carbon surface by ash phases (mainly albite) and its interaction with the electrolyte, which is monitored by ex situ XPS.

2.
Materials (Basel) ; 16(23)2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38068007

RESUMEN

The thermoelectric materials that operate at room temperature represent a scientific challenge in finding chemical compositions with three optimized, independent parameters, namely electrical and thermal conductivity and the Seebeck coefficient. Here, we explore the concept of the formation of hybrid composites between carbon-based materials and oxides, with the aim of modifying their thermoelectric performance at room temperature. Two types of commercially available graphene-based materials are selected: N-containing reduced graphene oxide (NrGO) and expanded graphite (ExGr). Although the NrGO displays the lowest thermal conductivity at room temperature, the ExGr is characterized by the lowest electrical resistivity and a negative Seebeck coefficient. As oxides, we choose two perspective thermoelectric materials: p-type Ca3Co4O9 and n-type Zn0.995Al0.005O. The hybrid composites were prepared by mechanical milling, followed by a pelleting. The thermoelectric efficiency was evaluated on the basis of its measured electrical resistivity, Seebeck coefficient and thermal conductivity at room temperature. It was found that that 2 wt.% of ExGr or NrGO leads to an enhancement of the thermoelectric activity of Ca3Co4O9, while, for Zn0.995Al0.005O, the amount of ExGr varies between 5 and 20 wt.%. The effect of the composites' morphology on the thermoelectric properties is discussed on the basis of SEM/EDS experiments.

3.
Materials (Basel) ; 16(19)2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37834683

RESUMEN

Sodium iron phosphate-pyrophosphate, Na4Fe3(PO4)2P2O7 (NFPP) emerges as an excellent cathode material for sodium-ion batteries. Because of lower electronic conductivity, its electrochemical performance depends drastically on the synthesis method. Herein, we provide a simple and unified method for synthesis of composites between NFPP and reduced graphene oxide (rGO) and standard carbon black, designed as electrode materials for both sodium- and lithium-ion batteries. The carbon additives affect only the morphology and textural properties of the composites. The performance of composites in sodium and lithium cells is evaluated at elevated temperatures. It is found that NFPP/rGO outperforms NFPP/C in both Na and Li storage due to its hybrid mechanism of energy storage. In sodium half-cells, NFPP/rGO delivers a reversible capacity of 95 mAh/g at 20 °C and 115 mAh/g at 40 °C with a cycling stability of 95% and 88% at a rate of C/2. In lithium half-cells, the capacity reaches a value of 120 mAh/g at 20 and 40 °C, but the cycling stability becomes worse, especially at 40 °C. The electrochemical performance is discussed on the basis of ex situ XRD and microscopic studies. The good Na storage performance of NFPP/rGO at an elevated temperature represents a first step towards its commercialization.

4.
ChemSusChem ; 16(4): e202201442, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36180386

RESUMEN

To outline the role of dual-ion intercalation chemistry to reach sustainable energy storage, the present Review aimed to compare two types of batteries: widely accepted dual-ion batteries based on cationic and anionic co-intercalation versus newly emerged hybrid metal-ion batteries using the co-intercalation of cations only. Among different charge carrier cations, the focus was on the materials able to co-intercalate monovalent ions (such Li+ and Na+ , Li+ and K+ , Na+ and K+ , etc.) or couples of mono- and multivalent ions (Li+ and Mg2+ , Na+ and Mg2+ , Na+ and Zn2+ , H+ and Zn2+ , etc.). Furthermore, the Review was directed on co-intercalation materials composed of environmentally benign and low-cost transition metals (e. g., Mn, Fe, etc.). The effect of the electrolyte on the co-intercalation properties was also discussed. The summarized knowledge on dual-ion energy storage could stimulate further research so that the hybrid metal-ion batteries become feasible in near future.

5.
Materials (Basel) ; 14(22)2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34832421

RESUMEN

The common approach to modify the thermoelectric activity of oxides is based on the concept of selective metal substitution. Herein, we demonstrate an alternative approach based on the formation of multiphase composites, at which the individual components have distinctions in the electric and thermal conductivities. The proof-of-concept includes the formation of multiphase composites between well-defined thermoelectric Co-based oxides: Ni, Fe co-substituted perovskite, LaCo0.8Ni0.1Fe0.1O3 (LCO), and misfit layered Ca3Co4O9. The interfacial chemical and electrical properties of composites are probed with the means of SEM, PEEM/XAS, and XPS tools, as well as the magnetic susceptibility measurements. The thermoelectric power of the multiphase composites is evaluated by the dimensionless figure of merit, ZT, calculated from the independently measured electrical resistivity (ρ), Seebeck coefficient (S), and thermal conductivity (λ). It has been demonstrated that the magnitude's electric and thermal conductivities depend more significantly on the composite interfaces than the Seebeck coefficient values. As a result, the highest thermoelectric activity is observed at the composite richer on the perovskite (i.e., ZT = 0.34 at 298 K).

6.
RSC Adv ; 10(49): 29051-29060, 2020 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35521091

RESUMEN

Sodium manganese phospho-olivine, NaMnPO4, is considered to be a higher-voltage alternative to the presently used iron-based electrode material, NaFePO4, for sodium ion batteries. Irrespective of this advantage, the electrochemical performance of NaMnPO4 is still far from what is desired. Herein we provide the first report on the storage performance of NaMnPO4 having a structure modified by Mg2+ substitution. The Mg-substituted phospho-olivines are prepared on the basis of ionic exchange reactions involving the participation of Mg-substituted KMnPO4·H2O dittmarites as structural template. Furthermore, the phosphate particles were covered with a thin layer (up to 5 nm) of activated carbon through ball-milling. The storage performance of phospho-olivines is analyzed in sodium and lithium half-ion cells, as well as in full-ion cells versus bio-mass derived activated carbon and spinel Li4Ti5O12 as anodes. The compatibility of phospho-olivines with electrolytes is assessed by utilization of several types of lithium and sodium carbonate-based solutions. In sodium half-cell, the Mg-substituted phosphate displays a multi-phase mechanism of Na+ intercalation in case when NaTFSI-based electrolyte is used. In lithium half-cell, the high specific capacity and rate capability is achieved for phospho-olivine cycled in LiPF6-based electrolyte. This is a consequence of the occurrence of dual Li+,Na+ intercalation, which encompass nano-sized domains. The utilization of the Mg-substituted phospho-olivine in the full ion cell is demonstrated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...