Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Physiol ; 15: 1378565, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38812883

RESUMEN

Extracellular vesicles mediate intercellular communication by transporting biologically active macromolecules. Our prior studies have demonstrated that the nuclear factor of activated T cell cytoplasmic member 3 (NFATc3) is activated in mouse pulmonary macrophages in response to lipopolysaccharide (LPS). Inhibition of NFATc3 activation by a novel cell-permeable calcineurin peptide inhibitor CNI103 mitigated the development of acute lung injury (ALI) in LPS-treated mice. Although pro-inflammatory lipid mediators are known contributors to lung inflammation and injury, it remains unclear whether the calcineurin-NFATc pathway regulates extracellular vesicle (EV) lipid content and if this content contributes to ALI pathogenesis. In this study, EVs from mouse bronchoalveolar lavage fluid (BALF) were analyzed for their lipid mediators by liquid chromatography in conjunction with mass spectrometry (LC-MS/MS). Our data demonstrate that EVs from LPS-treated mice contained significantly higher levels of arachidonic acid (AA) metabolites, which were found in low levels by prior treatment with CNI103. The catalytic activity of lung tissue cytoplasmic phospholipase A2 (cPLA2) increased during ALI, correlating with an increased amount of arachidonic acid (AA) in the EVs. Furthermore, ALI is associated with increased expression of cPLA2, cyclooxygenase 2 (COX2), and lipoxygenases (5-LOX, 12-LOX, and 15-LOX) in lung tissue, and pretreatment with CNI103 inhibited the catalytic activity of cPLA2 and the expression of cPLA2, COX, and LOX transcripts. Furthermore, co-culture of mouse pulmonary microvascular endothelial cell (PMVEC) monolayer and NFAT-luciferase reporter macrophages with BALF EVs from LPS-treated mice increased the pulmonary microvascular endothelial cell (PMVEC) monolayer barrier permeability and luciferase activity in macrophages. However, EVs from CNI103-treated mice had no negative impact on PMVEC monolayer barrier integrity. In summary, BALF EVs from LPS-treated mice carry biologically active NFATc-dependent, AA-derived lipids that play a role in regulating PMVEC monolayer barrier function.

2.
Mol Cancer Ther ; 23(4): 552-563, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38030378

RESUMEN

In castration-resistant prostate cancer (CRPC), increased glucocorticoid receptor (GR) expression and ensuing transcriptional activity have been proposed as an oncogenic "bypass" mechanism in response to androgen receptor (AR) signaling inhibition (ARSi). Here, we report that GR transcriptional activity acquired following ARSi is associated with the upregulation of cyclic adenosine monophosphate (cAMP)-associated gene expression pathways in both model systems and metastatic prostate cancer patient samples. In the context of ARSi, the expression of GR-mediated genes encoding cAMP signaling pathway-associated proteins can be inhibited by treatment with selective GR modulators (SGRMs). For example, in the context of ARSi, we found that GR activation resulted in upregulation of protein kinase inhibitor beta (PKIB) mRNA and protein levels, leading to nuclear accumulation of the cAMP-dependent protein kinase A catalytic subunit (PKA-c). Increased PKA-c, in turn, is associated with increased cAMP response element-binding protein phosphorylation and activity. Furthermore, enzalutamide and SGRM combination therapy in mice bearing CRPC xenografts delayed CRPC progression compared with enzalutamide therapy alone, and reduced tumor PKIB mRNA expression. Supporting the clinical importance of GR/PKA signaling activation in CRPC, we found a significant enrichment of both cAMP pathway signaling-associated gene expression and high NR3C1 (GR) activity in patient-derived xenograft models and metastatic human CRPC samples. These findings suggest a novel mechanism linking CRPC-induced GR transcriptional activity with increased cAMP signaling in AR-antagonized CRPC. Furthermore, our findings suggest that GR-specific modulation in addition to AR antagonism may delay GR+ CRPC time to recurrence, at least in part, by inhibiting tumor cAMP/PKA pathways.


Asunto(s)
Benzamidas , Feniltiohidantoína , Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Animales , Ratones , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Receptores de Glucocorticoides/metabolismo , Glucocorticoides/uso terapéutico , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Línea Celular Tumoral , Nitrilos/uso terapéutico , Transducción de Señal , ARN Mensajero
3.
J Surg Res ; 283: 368-376, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36427447

RESUMEN

INTRODUCTION: Patients with sepsis exhibit significant, persistent immunologic dysfunction. Evidence supports the hypothesis that epigenetic regulation of key cytokines plays an important role in this dysfunction. In sepsis, circulating microvesicles (MVs) containing elevated levels of DNA methyltransferase (DNMT) mRNA cause gene methylation and silencing in recipient cells. We sought to examine the functional role of MV DNMT proteins in this immunologic dysfunction. METHODS: In total, 33 patients were enrolled within 24 h of sepsis diagnosis (23 sepsis, 10 critically ill controls). Blood and MVs were collected on days 1, 3, and 5 of sepsis, and protein was isolated from the MVs. Levels of DNMT protein and activity were quantified. MVs were produced in vitro by stimulating naïve monocytes with lipopolysaccharide. Methylation was assessed using bisulfate site-specific qualitative real-time polymerase chain reaction. RESULTS: The size of MVs in the patients with sepsis decreased from days 1 to 5 compared to the control group. Circulating MVs contained significantly higher levels of DNMT 1 and 3A, protein. We recapitulated the production of these DNMT-containing MVs in vitro by treating monocytes with lipopolysaccharide. We found that exposing naïve monocytes to these MVs resulted in increased promoter methylation of tumor necrosis factor alpha. CONCLUSIONS: An analysis of the isolated MVs revealed higher levels of DNMT proteins in septic patients than those in nonseptic patients. Exposing naïve monocytes to DNMT-containing MVs produced in vitro resulted in hypermethylation of tumor necrosis factor alpha, a key cytokine implicated in postsepsis immunosuppression. These results suggest that DNMT-containing MVs cause epigenetic changes in recipient cells. This study highlights a novel role for MVs in the immune dysfunction of patients with sepsis.


Asunto(s)
Epigénesis Genética , Sepsis , Humanos , Metiltransferasas/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Lipopolisacáridos , Terapia de Inmunosupresión , Citocinas/metabolismo , ADN
4.
Shock ; 57(6): 218-227, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35759303

RESUMEN

INTRODUCTION: Survivors of sepsis exhibit persistent immunosuppression. Epigenetic events may be responsible for some of these immunosuppressive changes. During sepsis circulating exosomes contain large quantities of DNA methyltransferase (DNMT) mRNAs. We hypothesized that exosomes directly transfer DNMT mRNAs to recipient monocytes with resultant methylation events and immunosuppression. METHODS: Exosomes containing DNMT mRNA were generated by stimulating monocytes with LPS. Confocal microscopy was used to determine uptake kinetics in the presence of pharmacologic inhibition. Expression and packaging of specific DNMT mRNA was controlled using DNMT siRNAs. Whole genome and gene specific methylation was assessed using bisulfite sequencing. Ingenuity pathway analysis was performed to determine the biological function of significance of differentially methylated regions. RESULTS: Exosomes effectively transferred DNMT mRNA to recipient monocytes. Pharmacologic inhibition of exosome uptake prevented this increase in DNMT mRNA expression. Recipient monocytes exhibited hypermethylation changes and gene suppression. siRNAs decreased the packaging of DNMT mRNAs and prevented TNFα gene suppression, restoring immunocompetence. CONCLUSION: These data support a role for exosome-mediated transfer of DNMT mRNA with resultant methylation and gene silencing. Pharmacologic uptake inhibition or targeted siRNA mediated DNMT gene silencing prevented DNMT mRNA transfer and maintained the cell's ability to express TNFα in response to LPS. This highlights the potential therapeutic value of targeting these exosome-mediated epigenetic events to maintain the host immune response during sepsis.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas , Sepsis , ADN , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Humanos , Lipopolisacáridos , Monocitos/metabolismo , Fenotipo , ARN Mensajero/genética , ARN Interferente Pequeño , Sepsis/genética , Transferasas/genética , Factor de Necrosis Tumoral alfa/genética
5.
Breast Cancer Res ; 21(1): 82, 2019 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-31340854

RESUMEN

BACKGROUND: Non-ER nuclear receptor activity can alter estrogen receptor (ER) chromatin association and resultant ER-mediated transcription. Consistent with GR modulation of ER activity, high tumor glucocorticoid receptor (GR) expression correlates with improved relapse-free survival in ER+ breast cancer (BC) patients. METHODS: In vitro cell proliferation assays were used to assess ER-mediated BC cell proliferation following GR modulation. ER chromatin association following ER/GR co-liganding was measured using global ChIP sequencing and directed ChIP analysis of proliferative gene enhancers. RESULTS: We found that GR liganding with either a pure agonist or a selective GR modulator (SGRM) slowed estradiol (E2)-mediated proliferation in ER+ BC models. SGRMs that antagonized transcription of GR-unique genes both promoted GR chromatin association and inhibited ER chromatin localization at common DNA enhancer sites. Gene expression analysis revealed that ER and GR co-activation decreased proliferative gene activation (compared to ER activation alone), specifically reducing CCND1, CDK2, and CDK6 gene expression. We also found that ligand-dependent GR occupancy of common ER-bound enhancer regions suppressed both wild-type and mutant ER chromatin association and decreased corresponding gene expression. In vivo, treatment with structurally diverse SGRMs also reduced MCF-7 Y537S ER-expressing BC xenograft growth. CONCLUSION: These studies demonstrate that liganded GR can suppress ER chromatin occupancy at shared ER-regulated enhancers, including CCND1 (Cyclin D1), regardless of whether the ligand is a classic GR agonist or antagonist. Resulting GR-mediated suppression of ER+ BC proliferative gene expression and cell division suggests that SGRMs could decrease ER-driven gene expression.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Cromatina/metabolismo , Mutación , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Receptores de Glucocorticoides/metabolismo , Animales , Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Modelos Animales de Enfermedad , Elementos de Facilitación Genéticos , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Unión Proteica , Transcripción Genética , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Clin Cancer Res ; 24(14): 3433-3446, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29636357

RESUMEN

Purpose: Although high glucocorticoid receptor (GR) expression in early-stage estrogen receptor (ER)-negative breast cancer is associated with shortened relapse-free survival (RFS), how associated GR transcriptional activity contributes to aggressive breast cancer behavior is not well understood. Using potent GR antagonists and primary tumor gene expression data, we sought to identify a tumor-relevant gene signature based on GR activity that would be more predictive than GR expression alone.Experimental Design: Global gene expression and GR ChIP-sequencing were performed to identify GR-regulated genes inhibited by two chemically distinct GR antagonists, mifepristone and CORT108297. Differentially expressed genes from MDA-MB-231 cells were cross-evaluated with significantly expressed genes in GR-high versus GR-low ER-negative primary breast cancers. The resulting subset of GR-targeted genes was analyzed in two independent ER-negative breast cancer cohorts to derive and then validate the GR activity signature (GRsig).Results: Gene expression pathway analysis of glucocorticoid-regulated genes (inhibited by GR antagonism) revealed cell survival and invasion functions. GR ChIP-seq analysis demonstrated that GR antagonists decreased GR chromatin association for a subset of genes. A GRsig that comprised n = 74 GR activation-associated genes (also reversed by GR antagonists) was derived from an adjuvant chemotherapy-treated Discovery cohort and found to predict probability of relapse in a separate Validation cohort (HR = 1.9; P = 0.012).Conclusions: The GRsig discovered herein identifies high-risk ER-negative/GR-positive breast cancers most likely to relapse despite administration of adjuvant chemotherapy. Because GR antagonism can reverse expression of these genes, we propose that addition of a GR antagonist to chemotherapy may improve outcome for these high-risk patients. Clin Cancer Res; 24(14); 3433-46. ©2018 AACR.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Regulación Neoplásica de la Expresión Génica , Receptores de Glucocorticoides/antagonistas & inhibidores , Receptores de Glucocorticoides/metabolismo , Transcriptoma , Animales , Antineoplásicos/uso terapéutico , Biomarcadores de Tumor , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/mortalidad , Línea Celular Tumoral , Supervivencia Celular/genética , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Resistencia a Antineoplásicos/genética , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Pronóstico , Regiones Promotoras Genéticas , ARN Interferente Pequeño/genética , Receptores de Estrógenos/metabolismo , Análisis de Supervivencia , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA