Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 40
1.
Cancers (Basel) ; 16(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38730707

The development of multiple-drug-resistant (MDR) cancer all too often signals the need for toxic alternative therapy or palliative care. Our recent in vivo and in vitro studies using canine MDR lymphoma cancer cells demonstrate that the Anaphase Promoting Complex (APC) is impaired in MDR cells compared to normal canine control and drug-sensitive cancer cells. Here, we sought to establish whether this phenomena is a generalizable mechanism independent of species, malignancy type, or chemotherapy regime. To test the association of blunted APC activity with MDR cancer behavior, we used matched parental and MDR MCF7 human breast cancer cells, and a patient-derived xenograft (PDX) model of human triple-negative breast cancer. We show that APC activating mechanisms, such as APC subunit 1 (APC1) phosphorylation and CDC27/CDC20 protein associations, are reduced in MCF7 MDR cells when compared to chemo-sensitive matched cell lines. Consistent with impaired APC function in MDR cells, APC substrate proteins failed to be effectively degraded. Similar to our previous observations in canine MDR lymphoma cells, chemical activation of the APC using Mad2 Inhibitor-1 (M2I-1) in MCF7 MDR cells enhanced APC substrate degradation and resensitized MDR cells in vitro to the cytotoxic effects of the alkylating chemotherapeutic agent, doxorubicin (DOX). Using cell cycle arrest/release experiments, we show that mitosis is delayed in MDR cells with elevated substrate levels. When pretreated with M2I-1, MDR cells progress through mitosis at a faster rate that coincides with reduced levels of APC substrates. In our PDX model, mice growing a clinically MDR human triple-negative breast cancer tumor show significantly reduced tumor growth when treated with M2I-1, with evidence of increased DNA damage and apoptosis. Thus, our results strongly support the hypothesis that APC impairment is a driver of aggressive tumor development and that targeting the APC for activation has the potential for meaningful clinical benefits in treating recurrent cases of MDR malignancy.

2.
Cancers (Basel) ; 14(17)2022 Aug 30.
Article En | MEDLINE | ID: mdl-36077749

Like humans, canine lymphomas are treated by chemotherapy cocktails and frequently develop multiple drug resistance (MDR). Their shortened clinical timelines and tumor accessibility make canines excellent models to study MDR mechanisms. Insulin-sensitizers have been shown to reduce the incidence of cancer in humans prescribed them, and we previously demonstrated that they also reverse and delay MDR development in vitro. Here, we treated canines with MDR lymphoma with metformin to assess clinical and tumoral responses, including changes in MDR biomarkers, and used mRNA microarrays to determine differential gene expression. Metformin reduced MDR protein markers in all canines in the study. Microarrays performed on mRNAs gathered through longitudinal tumor sampling identified a 290 gene set that was enriched in Anaphase Promoting Complex (APC) substrates and additional mRNAs associated with slowed mitotic progression in MDR samples compared to skin controls. mRNAs from a canine that went into remission showed that APC substrate mRNAs were decreased, indicating that the APC was activated during remission. In vitro validation using canine lymphoma cells selected for resistance to chemotherapeutic drugs confirmed that APC activation restored MDR chemosensitivity, and that APC activity was reduced in MDR cells. This supports the idea that rapidly pushing MDR cells that harbor high loads of chromosome instability through mitosis, by activating the APC, contributes to improved survival and disease-free duration.

3.
Aging Cell ; 20(6): e13373, 2021 06.
Article En | MEDLINE | ID: mdl-33979898

The ribosomal DNA (rDNA) in Saccharomyces cerevisiae is in one tandem repeat array on Chromosome XII. Two regions within each repetitive element, called intergenic spacer 1 (IGS1) and IGS2, are important for organizing the rDNA within the nucleolus. The Smc5/6 complex localizes to IGS1 and IGS2. We show that Smc5/6 has a function in the rDNA beyond its role in homologous recombination (HR) at the replication fork barrier (RFB) located in IGS1. Fob1 is required for optimal binding of Smc5/6 at IGS1 whereas the canonical silencing factor Sir2 is required for its optimal binding at IGS2, independently of Fob1. Through interdependent interactions, Smc5/6 stabilizes Sir2 and Cohibin at both IGS and its recovery at IGS2 is important for nucleolar compaction and transcriptional silencing, which in turn supports rDNA stability and lifespan.


Cell Cycle Proteins/metabolism , DNA, Ribosomal/genetics , DNA-Binding Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Animals
4.
Methods Mol Biol ; 2196: 229-233, 2021.
Article En | MEDLINE | ID: mdl-32889725

The budding yeast is a valuable model system for discovering molecular mechanisms underlying cellular aging. This is due to the ease of performing genetic manipulations in yeast and the vast number of evolutionarily conserved genes that have been found to regulate cellular health and lifespan from yeast to humans. Lifespan assays are an essential tool for examining the effects of these genes on longevity. There are two ways lifespan is measured in yeast: replicative lifespan (RLS) and chronological lifespan (CLS). RLS is a measure of how many divisions an individual mother cell will undergo. CLS measures the length of time nondividing cells survive. Previously described CLS assays involved diluting and plating cells of a culture and counting the colonies that arose. While effective, this method is both time and labor intensive. Here, we describe a method for a high-throughput rapid CLS assay that is both time- and cost-efficient.


Cellular Senescence , High-Throughput Screening Assays , Longevity , Yeasts/physiology , Biological Assay , Data Analysis , Saccharomyces cerevisiae/physiology , Tetrazolium Salts , Thiazoles
5.
Aging (Albany NY) ; 12(15): 15818-15855, 2020 08 15.
Article En | MEDLINE | ID: mdl-32805721

The Anaphase Promoting Complex (APC), a multi-subunit ubiquitin ligase, facilitates mitotic and G1 progression, and is now recognized to play a role in maintaining genomic stability. Many APC substrates have been observed overexpressed in multiple cancer types, such as CDC20, the Aurora A and B kinases, and Forkhead box M1 (FOXM1), suggesting APC activity is important for cell health. We performed BioGRID analyses of the APC coactivators CDC20 and CDH1, which revealed that at least 69 proteins serve as APC substrates, with 60 of them identified as playing a role in tumor promotion and 9 involved in tumor suppression. While these substrates and their association with malignancies have been studied in isolation, the possibility exists that generalized APC dysfunction could result in the inappropriate stabilization of multiple APC targets, thereby changing tumor behavior and treatment responsiveness. It is also possible that the APC itself plays a crucial role in tumorigenesis through its regulation of mitotic progression. In this review the connections between APC activity and dysregulation will be discussed with regards to cell cycle dysfunction and chromosome instability in cancer, along with the individual roles that the accumulation of various APC substrates may play in cancer progression.


Anaphase-Promoting Complex-Cyclosome/metabolism , Cell Transformation, Neoplastic/metabolism , Neoplasms/enzymology , Anaphase-Promoting Complex-Cyclosome/genetics , Animals , Cell Cycle , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Chromosomal Instability , Disease Progression , Gene Expression Regulation, Neoplastic , Humans , Mitosis , Neoplasms/genetics , Neoplasms/pathology , Signal Transduction , Substrate Specificity
6.
Biomedicines ; 8(7)2020 Jul 01.
Article En | MEDLINE | ID: mdl-32630170

Cellular health is reliant on proteostasis-the maintenance of protein levels regulated through multiple pathways modulating protein synthesis, degradation and clearance. Loss of proteostasis results in serious disease and is associated with aging. One proteinaceous structure underlying the nuclear envelope-the nuclear lamina-coordinates essential processes including DNA repair, genome organization and epigenetic and transcriptional regulation. Loss of proteostasis within the nuclear lamina results in the accumulation of proteins, disrupting these essential functions, either via direct interactions of protein aggregates within the lamina or by altering systems that maintain lamina structure. Here we discuss the links between proteostasis and disease of the nuclear lamina, as well as how manipulating specific proteostatic pathways involved in protein clearance could improve cellular health and prevent/reverse disease.

7.
Elife ; 72018 08 17.
Article En | MEDLINE | ID: mdl-30117416

Translational efficiency correlates with longevity, yet its role in lifespan determination remains unclear. Using ribosome profiling, translation efficiency is globally reduced during replicative aging in budding yeast by at least two mechanisms: Firstly, Ssd1 is induced during aging, sequestering mRNAs to P-bodies. Furthermore, Ssd1 overexpression in young cells reduced translation and extended lifespan, while loss of Ssd1 reduced the translational deficit of old cells and shortened lifespan. Secondly, phosphorylation of eIF2α, mediated by the stress kinase Gcn2, was elevated in old cells, contributing to the global reduction in translation without detectable induction of the downstream Gcn4 transcriptional activator. tRNA overexpression activated Gcn2 in young cells and extended lifespan in a manner dependent on Gcn4. Moreover, overexpression of Gcn4 sufficed to extend lifespan in an autophagy-dependent manner in the absence of changes in global translation, indicating that Gcn4-mediated autophagy induction is the ultimate downstream target of activated Gcn2, to extend lifespan.


Basic-Leucine Zipper Transcription Factors/genetics , Longevity/genetics , Protein Biosynthesis , Protein Serine-Threonine Kinases/genetics , Saccharomyces cerevisiae Proteins/genetics , Eukaryotic Initiation Factor-2/genetics , Gene Expression Regulation, Fungal , Phosphorylation , Ribosomes/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development
8.
Int J Mol Sci ; 19(7)2018 Jun 27.
Article En | MEDLINE | ID: mdl-29954095

In aging cells, genomic instability is now recognized as a hallmark event. Throughout life, cells encounter multiple endogenous and exogenous DNA damaging events that are mostly repaired, but inevitably DNA mutations, chromosome rearrangements, and epigenetic deregulation begins to mount. Now that people are living longer, more and more late life time is spent suffering from age-related disease, in which genomic instability plays a critical role. However, several major questions remain heavily debated, such as the following: When does aging start? How long can we live? In order to minimize the impact of genomic instability on longevity, it is important to understand when aging starts, and to ensure repair mechanisms remain optimal from the very start to the very end. In this review, the interplay between the stress and nutrient response networks, and the regulation of homeostasis and genomic stability, is discussed. Mechanisms that link these two networks are predicted to be key lifespan determinants. The Anaphase Promoting Complex (APC), a large evolutionarily conserved ubiquitin ligase, can potentially serve this need. Recent work demonstrates that the APC maintains genomic stability, mounts a stress response, and increases longevity in yeast. Furthermore, inhibition of APC activity by glucose and nutrient response factors indicates a tight link between the APC and the stress/nutrient response networks.


Anaphase-Promoting Complex-Cyclosome/metabolism , Anaphase-Promoting Complex-Cyclosome/genetics , Animals , Genomic Instability/genetics , Genomic Instability/physiology , Humans , Longevity/genetics , Longevity/physiology , Neoplasms/genetics , Neoplasms/metabolism
9.
G3 (Bethesda) ; 8(5): 1579-1592, 2018 05 04.
Article En | MEDLINE | ID: mdl-29519938

The yeast, Saccharomyces cerevisiae, like other higher eukaryotes, undergo a finite number of cell divisions before exiting the cell cycle due to the effects of aging. Here, we show that yeast aging begins with the nuclear exclusion of Hcm1 in young cells, resulting in loss of acidic vacuoles. Autophagy is required for healthy aging in yeast, with proteins targeted for turnover by autophagy directed to the vacuole. Consistent with this, vacuolar acidity is necessary for vacuolar function and yeast longevity. Using yeast genetics and immunofluorescence microscopy, we confirm that vacuolar acidity plays a critical role in cell health and lifespan, and is potentially maintained by a series of Forkhead Box (Fox) transcription factors. An interconnected transcriptional network involving the Fox proteins (Fkh1, Fkh2 and Hcm1) are required for transcription of v-ATPase subunits and vacuolar acidity. As cells age, Hcm1 is rapidly excluded from the nucleus in young cells, blocking the expression of Hcm1 targets (Fkh1 and Fkh2), leading to loss of v-ATPase gene expression, reduced vacuolar acidification, increased α-syn-GFP vacuolar accumulation, and finally, diminished replicative lifespan (RLS). Loss of vacuolar acidity occurs about the same time as Hcm1 nuclear exclusion and is conserved; we have recently demonstrated that lysosomal alkalization similarly contributes to aging in C. elegans following a transition from progeny producing to post-reproductive life. Our data points to a molecular mechanism regulating vacuolar acidity that signals the end of RLS when acidification is lost.


Alkalies/metabolism , Cell Nucleus/metabolism , Cellular Senescence , Forkhead Transcription Factors/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Vacuoles/metabolism , Acids/metabolism , Cell Cycle Proteins/metabolism , Gene Expression Regulation, Fungal , Green Fluorescent Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Up-Regulation/genetics , Vacuolar Proton-Translocating ATPases/metabolism , alpha-Synuclein/metabolism
10.
J Biol Methods ; 5(4): e106, 2018.
Article En | MEDLINE | ID: mdl-31453256

The budding yeast Saccharomyces cerevisiae is a major model system in the study of aging. Like metazoans, yeast lifespan is extended by caloric restriction and treatment with pharmacological agents which extend lifespan. A major workhorse of aging research in budding yeast is the chronological lifespan assay. Traditionally, chronological lifespan assays consist of taking regular samples of aging yeast cultures, plating out aliquots on agar, and counting the resulting colonies. This method, while highly reliable, is labor-intensive and expensive in terms of materials consumed. Here, we report a novel MTT-based method for assessing chronological lifespan in yeast. We show that this method is equal to the colony counting method in its rigorous and reliable measurement of lifespan extension in yeast as a result of caloric restriction, and is able to distinguish known long-lived and short-lived yeast strains. We have further developed this method into a high-throughput assay that allows rapid screening of potential anti-aging compounds as well as yeast strains with altered lifespan. Application of this method permits the rapid identification of anti-aging activities in yeast and may facilitate identification of materials with therapeutic potential for higher animals and, most importantly, humans.

11.
PLoS One ; 12(12): e0187191, 2017.
Article En | MEDLINE | ID: mdl-29211738

Multiple drug resistant (MDR) malignancy remains a predictable and often terminal event in cancer therapy, and affects individuals with many cancer types, regardless of the stage at which they were originally diagnosed or the interval from last treatment. Protein biomarkers of MDR are not globally used for clinical decision-making, but include the overexpression of drug-efflux pumps (ABC transporter family) such as MDR-1 and BCRP, as well as HIF1α, a stress responsive transcription factor found elevated within many MDR tumors. Here, we present the important in vitro discovery that the development of MDR (in breast cancer cells) can be prevented, and that established MDR could be resensitized to therapy, by adjunct treatment with metformin. Metformin is prescribed globally to improve insulin sensitivity, including in those individuals with Type 2 Diabetes Mellitus (DM2). We demonstrate the effectiveness of metformin in resensitizing MDR breast cancer cell lines to their original treatment, and provide evidence that metformin may function through a mechanism involving post-translational histone modifications via an indirect histone deacetylase inhibitor (HDACi) activity. We find that metformin, at low physiological concentrations, reduces the expression of multiple classic protein markers of MDR in vitro and in preliminary in vivo models. Our demonstration that metformin can prevent MDR development and resensitize MDR cells to chemotherapy in vitro, provides important medical relevance towards metformin's potential clinical use against MDR cancers.


Breast Neoplasms/drug therapy , Doxorubicin/pharmacology , Drug Resistance, Neoplasm/drug effects , Metformin/pharmacology , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Synergism , Estrogen Receptor alpha/metabolism , Female , Humans , Mice , Xenograft Model Antitumor Assays
12.
Genetics ; 207(1): 83-101, 2017 09.
Article En | MEDLINE | ID: mdl-28696216

Aging in eukaryotes is accompanied by widespread deterioration of the somatic tissue. Yet, abolishing germ cells delays the age-dependent somatic decline in Caenorhabditis elegans In adult worms lacking germ cells, the activation of the DAF-9/DAF-12 steroid signaling pathway in the gonad recruits DAF-16 activity in the intestine to promote longevity-associated phenotypes. However, the impact of this pathway on the fitness of normally reproducing animals is less clear. Here, we explore the link between progeny production and somatic aging and identify the loss of lysosomal acidity-a critical regulator of the proteolytic output of these organelles-as a novel biomarker of aging in C. elegans The increase in lysosomal pH in older worms is not a passive consequence of aging, but instead is timed with the cessation of reproduction, and correlates with the reduction in proteostasis in early adult life. Our results further implicate the steroid signaling pathway and DAF-16 in dynamically regulating lysosomal pH in the intestine of wild-type worms in response to the reproductive cycle. In the intestine of reproducing worms, DAF-16 promotes acidic lysosomes by upregulating the expression of v-ATPase genes. These findings support a model in which protein clearance in the soma is linked to reproduction in the gonad via the active regulation of lysosomal acidification.


Aging/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Forkhead Transcription Factors/metabolism , Lysosomes/metabolism , Reproduction , Aging/genetics , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/physiology , Caenorhabditis elegans Proteins/genetics , Forkhead Transcription Factors/genetics , Intestinal Mucosa/metabolism , Proteostasis , Vacuolar Proton-Translocating ATPases/genetics , Vacuolar Proton-Translocating ATPases/metabolism
13.
ACS Chem Neurosci ; 7(12): 1671-1680, 2016 12 21.
Article En | MEDLINE | ID: mdl-27673434

The misfolding of α-synuclein is a critical event in the death of dopaminergic neurons and the progression of Parkinson's disease. Previously, it was suggested that drugs, which bind to α-synuclein and form a loop structure between the N- and C-termini, tend to be neuroprotective, whereas others, which cause a more compact structure, tend to be neurotoxic. To improve the binding to α-synuclein, eight novel compounds were synthesized from a caffeine scaffold attached to (R,S)-1-aminoindan, (R,S)-nicotine, and metformin, and their binding to α-synuclein determined through nanopore analysis and isothermal titration calorimetry. The ability of the dimers to interact with α-synuclein in a cell system was assayed in a yeast model of PD which expresses an AS-GFP (α-synuclein-Green Fluorescent Protein) construct under the control of a galactose promoter. In 5 mM galactose this yeast strain will not grow and large cytoplasmic foci are observed by fluorescent microscopy. Two of the dimers, C8-6-I and C8-6-N, at a concentration of 0.1 µM allowed the yeast to grow normally in 5 mM galactose and the AS-GFP became localized to the periphery of the cell. Both dimers were superior when compared to the monomeric compounds. The presence of the dimers also caused the disappearance of preformed cytoplasmic foci. Nanopore analysis of C8-6-I and C8-6-N were consistent with simultaneous binding to both the N- and C-terminus of α-synuclein but the binding constants were only 105 M-1.


Antiparkinson Agents/pharmacology , Yeasts/drug effects , Yeasts/growth & development , alpha-Synuclein/metabolism , Antiparkinson Agents/chemical synthesis , Calorimetry , Dimerization , Drug Evaluation, Preclinical , Galactose/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Microscopy, Fluorescence , Parkinson Disease/prevention & control , Protein Binding , Yeasts/genetics , Yeasts/metabolism , alpha-Synuclein/genetics
14.
Plant J ; 87(6): 617-28, 2016 09.
Article En | MEDLINE | ID: mdl-27233081

The ICK/KRP family of cyclin-dependent kinase (CDK) inhibitors modulates the activity of plant CDKs through protein binding. Previous work has shown that changing the levels of ICK/KRP proteins by overexpression or downregulation affects cell proliferation and plant growth, and also that the ubiquitin proteasome system is involved in degradation of ICK/KRPs. We show in this study that the region encompassing amino acids 21 to 40 is critical for ICK1 levels in both Arabidopsis and yeast. To determine how degradation of ICK1 is controlled, we analyzed the accumulation of hemagglutinin (HA) epitope-tagged ICK1 proteins in yeast mutants defective for two ubiquitin E3 ligases. The highest level of HA-ICK1 protein was observed when both the N-terminal 1-40 sequence was removed and the SCF (SKP1-Cullin1-F-box complex) function disrupted, suggesting the involvement of both SCF-dependent and SCF-independent mechanisms in the degradation of ICK1 in yeast. A short motif consisting of residues 21-30 is sufficient to render green fluorescent protein (GFP) unstable in plants and had a similar effect in plants regardless of whether it was fused to the N-terminus or C-terminus of GFP. Furthermore, results from a yeast ubiquitin receptor mutant rpn10Δ indicate that protein ubiquitination is not critical in the degradation of GFP-ICK1(1-40) in yeast. These results thus identify a protein-destabilizing sequence motif that does not contain a typical ubiquitination residue, suggesting that it probably functions through an SCF-independent mechanism.


Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Cyclin-Dependent Kinase Inhibitor Proteins/metabolism , Amino Acid Motifs , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cullin Proteins/genetics , Cyclin-Dependent Kinase Inhibitor Proteins/genetics , Gene Expression Regulation, Plant , Green Fluorescent Proteins/genetics , Leupeptins/pharmacology , Mutation , Plants, Genetically Modified , Protein Stability , Temperature , Ubiquitin/metabolism , Yeasts/drug effects , Yeasts/genetics
15.
Aging (Albany NY) ; 8(4): 810-30, 2016 04.
Article En | MEDLINE | ID: mdl-27099939

The Saccharomyces cerevisiae Forkhead Box (Fox) orthologs, Forkheads (Fkh) 1 and 2, are conserved transcription factors required for stress response, cell cycle progression and longevity. These yeast proteins play a key role in mitotic progression through activation of the ubiquitin E3 ligase Anaphase Promoting Complex (APC) via transcriptional control. Here, we used genetic and molecular analyses to demonstrate that the APC E3 activity is necessary for mitotic Fkh1 protein degradation and subsequent cell cycle progression. We report that Fkh1 protein degradation occurs specifically during mitosis, requires APCCdc20 and proteasome activity, and that a stable Fkh1 mutant reduces normal chronological lifespan, increases genomic instability, and increases sensitivity to stress. Our data supports a model whereby cell cycle progression through mitosis and G1 requires the targeted degradation of Fkh1 by the APC. This is significant to many fields as these results impact our understanding of the mechanisms underpinning the control of aging and cancer.


Anaphase-Promoting Complex-Cyclosome/metabolism , Genome , Longevity/physiology , Mitosis/physiology , Saccharomyces cerevisiae Proteins/metabolism , Stress, Physiological/physiology , Cell Cycle/physiology , Saccharomyces cerevisiae
16.
Microb Cell ; 3(11): 540-553, 2016 Nov 04.
Article En | MEDLINE | ID: mdl-28357323

The SNF1 kinase in Saccharomyces cerevisiae is an excellent model to study the regulation and function of the AMP-dependent protein kinase (AMPK) family of serine-threonine protein kinases. Yeast discoveries regarding the regulation of this non-hormonal sensor of metabolic/environmental stress are conserved in higher eukaryotes, including poly-ubiquitination of the α-subunit of yeast (Snf1) and human (AMPKα) that ultimately effects subunit stability and enzyme activity. The ubiquitin-cascade enzymes responsible for targeting Snf1 remain unknown, leading us to screen for those that impact SNF1 kinase function. We identified the E2, Ubc1, as a regulator of SNF1 kinase function. The decreased Snf1 abundance found upon deletion of Ubc1 is not due to increased degradation, but instead is partly due to impaired SNF1 gene expression, arising from diminished abundance of the Forkhead 1/2 proteins, previously shown to contribute to SNF1 transcription. Ultimately, we report that the Fkh1/2 cognate transcription factor, Hcm1, fails to enter the nucleus in the absence of Ubc1. This implies that Ubc1 acts indirectly through transcriptional effects to modulate SNF1 kinase activity.

17.
Cancers (Basel) ; 7(4): 2063-82, 2015 Oct 16.
Article En | MEDLINE | ID: mdl-26501324

Early detection and improved therapies for many cancers are enhancing survival rates. Although many cytotoxic therapies are approved for aggressive or metastatic cancer; response rates are low and acquisition of de novo resistance is virtually universal. For decades; chemotherapeutic treatments for cancer have included anthracyclines such as Doxorubicin (DOX); and its use in aggressive tumors appears to remain a viable option; but drug resistance arises against DOX; as for all other classes of compounds. Our recent work suggests the anticoagulant protein Tissue Factor Pathway Inhibitor 1α (TFPI1α) plays a role in driving the development of multiple drug resistance (MDR); but not maintenance; of the MDR state. Other factors; such as the ABC transporter drug efflux pumps MDR-1/P-gp (ABCB1) and BCRP (ABCG2); are required for MDR maintenance; as well as development. The patient population struggling with therapeutic resistance specifically requires novel treatment options to resensitize these tumor cells to therapy. In this review we discuss the development, maintenance, and reversal of MDR as three distinct phases of cancer biology. Possible means to exploit these stages to reverse MDR will be explored. Early molecular detection of MDRcancers before clinical failure has the potential to offer new approaches to fightingMDRcancer.

18.
PLoS Genet ; 11(8): e1005429, 2015 Aug.
Article En | MEDLINE | ID: mdl-26247883

Proliferating eukaryotic cells undergo a finite number of cell divisions before irreversibly exiting mitosis. Yet pathways that normally limit the number of cell divisions remain poorly characterized. Here we describe a screen of a collection of 3762 single gene mutants in the yeast Saccharomyces cerevisiae, accounting for 2/3 of annotated yeast ORFs, to search for mutants that undergo an atypically high number of cell divisions. Many of the potential longevity genes map to cellular processes not previously implicated in mitotic senescence, suggesting that regulatory mechanisms governing mitotic exit may be broader than currently anticipated. We focused on an ER-Golgi gene cluster isolated in this screen to determine how these ubiquitous organelles integrate into mitotic longevity. We report that a chronic increase in ER protein load signals an expansion in the assembly of autophagosomes in an Ire1-independent manner, accelerates trafficking of high molecular weight protein aggregates from the cytoplasm to the vacuoles, and leads to a profound enhancement of daughter cell production. We demonstrate that this catabolic network is evolutionarily conserved, as it also extends reproductive lifespan in the nematode Caenorhabditis elegans. Our data provide evidence that catabolism of protein aggregates, a natural byproduct of high protein synthesis and turn over in dividing cells, is among the drivers of mitotic longevity in eukaryotes.


Autophagy , Caenorhabditis elegans Proteins/physiology , Membrane Glycoproteins/physiology , Mitosis , Protein Serine-Threonine Kinases/physiology , Saccharomyces cerevisiae Proteins/physiology , Animals , Caenorhabditis elegans , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress , Genome, Fungal , Genome, Helminth , Homeostasis , Protein Aggregates , Reproduction , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/genetics , Unfolded Protein Response , Vesicular Transport Proteins/genetics
20.
J Biol Chem ; 290(25): 15393-15404, 2015 Jun 19.
Article En | MEDLINE | ID: mdl-25869125

The enzyme family of heterotrimeric AMP-dependent protein kinases is activated upon low energy states, conferring a switch toward energy-conserving metabolic pathways through immediate kinase actions on enzyme targets and delayed alterations in gene expression through its nuclear relocalization. This family is evolutionarily conserved, including the presence of a ubiquitin-associated (UBA) motif in most catalytic subunits. The potential for the UBA domain to promote protein associations or direct subcellular location, as seen in other UBA-containing proteins, led us to query whether the UBA domain within the yeast AMP-dependent protein kinase ortholog, SNF1 kinase, was important in these aspects of its regulation. Here, we demonstrate that conserved UBA motif mutations significantly alter SNF1 kinase activation and biological activity, including enhanced allosteric subunit associations and increased oxidative stress resistance and life span. Significantly, the enhanced UBA-dependent longevity and oxidative stress response are at least partially dependent on the Fkh1 and Fkh2 stress response transcription factors, which in turn are shown to influence Snf1 gene expression.


Gene Expression Regulation, Enzymologic/physiology , Gene Expression Regulation, Fungal/physiology , Oxidative Stress/physiology , Protein Serine-Threonine Kinases/biosynthesis , Saccharomyces cerevisiae/enzymology , Amino Acid Motifs , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Enzyme Activation/genetics , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Mutation , Protein Serine-Threonine Kinases/genetics , Protein Structure, Tertiary , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
...