Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biol Chem ; 386(12): 1239-52, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16336118

RESUMEN

In the cell, the protein synthetic machinery is a highly complex apparatus that offers many potential sites for functional interference and therefore represents a major target for antibiotics. The recent plethora of crystal structures of ribosomal subunits in complex with various antibiotics has provided unparalleled insight into their mode of interaction and inhibition. However, differences in the conformation, orientation and position of some of these drugs bound to ribosomal subunits of Deinococcus radiodurans (D50S) compared to Haloarcula marismortui (H50S) have raised questions regarding the species specificity of binding. Revisiting the structural data for the bacterial D50S-antibiotic complexes reveals that the mode of binding of the macrolides, ketolides, streptogramins and lincosamides is generally similar to that observed in the archaeal H50S structures. However, small discrepancies are observed, predominantly resulting from species-specific differences in the ribosomal proteins and rRNA constituting the drug-binding sites. Understanding how these small alterations at the binding site influence interaction with the drug will be essential for rational design of more potent inhibitors.


Asunto(s)
Antibacterianos/metabolismo , Antibacterianos/farmacología , Ribosomas/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión , Deinococcus/genética , Deinococcus/metabolismo , Farmacorresistencia Bacteriana , Haloarcula marismortui/genética , Haloarcula marismortui/metabolismo , Cetólidos/metabolismo , Lincosamidas , Macrólidos/metabolismo , Datos de Secuencia Molecular , Estructura Molecular , ARN Ribosómico/química , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Ribosomas/química , Ribosomas/genética , Especificidad de la Especie , Estreptograminas/metabolismo
2.
Structure ; 13(11): 1685-94, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16271892

RESUMEN

This study presents the X-ray structure of the N-terminal binding domain of the D. radiodurans trigger factor (TF) in complex with the D. radiodurans large ribosomal subunit. At 3.35 A, a complete description of the interactions with ribosomal proteins L23, L29, and 23S rRNA are disclosed, many of which differ from those found previously for a heterologous bacterial-archaeal TF-ribosome complex. The beta hairpin loop of eubacterial L24, which is shorter in archaeal ribosomes, contacts the TF and severely diminishes the molecular cradle proposed to exist between the TF and ribosome. Bound to the ribosome, TF exposes a hydrophobic crevice large enough to accommodate the nascent polypeptide chain. Superimposition of the full-length TF and the signal-recognition particle (SRP) onto the complex shows that simultaneous cohabitation is possible, in agreement with biochemical data, and suggests a model for the interplay of TF, SRP, and the nascent chain during translation.


Asunto(s)
Proteínas Bacterianas/química , Deinococcus/química , Chaperonas Moleculares/química , Pliegue de Proteína , Proteínas Ribosómicas/química , Proteínas Ribosómicas/fisiología , Partícula de Reconocimiento de Señal/química , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/fisiología , Sitios de Unión , Deinococcus/genética , Deinococcus/fisiología , Interacciones Hidrofóbicas e Hidrofílicas , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/fisiología , Datos de Secuencia Molecular , Péptidos/química , Péptidos/metabolismo , Péptidos/fisiología , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Ribosómicas/metabolismo , Partícula de Reconocimiento de Señal/metabolismo , Partícula de Reconocimiento de Señal/fisiología
3.
Cell ; 121(7): 991-1004, 2005 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-15989950

RESUMEN

The L7/12 stalk of the large subunit of bacterial ribosomes encompasses protein L10 and multiple copies of L7/12. We present crystal structures of Thermotoga maritima L10 in complex with three L7/12 N-terminal-domain dimers, refine the structure of an archaeal L10E N-terminal domain on the 50S subunit, and identify these elements in cryo-electron-microscopic reconstructions of Escherichia coli ribosomes. The mobile C-terminal helix alpha8 of L10 carries three L7/12 dimers in T. maritima and two in E. coli, in concordance with the different length of helix alpha8 of L10 in these organisms. The stalk is organized into three elements (stalk base, L10 helix alpha8-L7/12 N-terminal-domain complex, and L7/12 C-terminal domains) linked by flexible connections. Highly mobile L7/12 C-terminal domains promote recruitment of translation factors to the ribosome and stimulate GTP hydrolysis by the ribosome bound factors through stabilization of their active GTPase conformation.


Asunto(s)
Escherichia coli/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Thermotoga maritima/metabolismo , Secuencia de Aminoácidos , Sitios de Unión/fisiología , Microscopía por Crioelectrón , Cristalografía por Rayos X , Activación Enzimática/fisiología , Escherichia coli/genética , Escherichia coli/ultraestructura , Modelos Moleculares , Datos de Secuencia Molecular , Factores Procarióticos de Iniciación/metabolismo , Estructura Secundaria de Proteína/fisiología , Estructura Terciaria de Proteína/fisiología , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , ARN Ribosómico/metabolismo , Proteína Ribosómica L10 , Proteínas Ribosómicas/ultraestructura , Ribosomas/genética , Ribosomas/ultraestructura , Thermotoga maritima/genética , Thermotoga maritima/ultraestructura
4.
Mol Microbiol ; 54(5): 1287-94, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15554968

RESUMEN

Tiamulin, a prominent member of the pleuromutilin class of antibiotics, is a potent inhibitor of protein synthesis in bacteria. Up to now the effect of pleuromutilins on the ribosome has not been determined on a molecular level. The 3.5 A structure of the 50S ribosomal subunit from Deinococcus radiodurans in complex with tiamulin provides for the first time a detailed picture of its interactions with the 23S rRNA, thus explaining the molecular mechanism of the antimicrobial activity of the pleuromutilin class of antibiotics. Our results show that tiamulin is located within the peptidyl transferase center (PTC) of the 50S ribosomal subunit with its tricyclic mutilin core positioned in a tight pocket at the A-tRNA binding site. Also, the extension, which protrudes from its mutilin core, partially overlaps with the P-tRNA binding site. Thereby, tiamulin directly inhibits peptide bond formation. Comparison of the tiamulin binding site with other PTC targeting drugs, like chloramphenicol, clindamycin and streptogramins, may facilitate the design of modified or hybridized drugs that extend the applicability of this class of antibiotics.


Asunto(s)
Deinococcus/química , Diterpenos/química , Diterpenos/farmacología , Inhibidores de la Síntesis de la Proteína/química , Ribosomas/química , Cristalografía por Rayos X , Deinococcus/efectos de los fármacos , Diterpenos/metabolismo , Modelos Moleculares , Peptidil Transferasas/antagonistas & inhibidores , Compuestos Policíclicos , Conformación Proteica , Inhibidores de la Síntesis de la Proteína/farmacología , ARN Ribosómico 23S/química , ARN Ribosómico 23S/metabolismo , Ribosomas/metabolismo , Pleuromutilinas
5.
BMC Biol ; 2: 4, 2004 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-15059283

RESUMEN

BACKGROUND: The bacterial ribosome is a primary target of several classes of antibiotics. Investigation of the structure of the ribosomal subunits in complex with different antibiotics can reveal the mode of inhibition of ribosomal protein synthesis. Analysis of the interactions between antibiotics and the ribosome permits investigation of the specific effect of modifications leading to antimicrobial resistances. Streptogramins are unique among the ribosome-targeting antibiotics because they consist of two components, streptogramins A and B, which act synergistically. Each compound alone exhibits a weak bacteriostatic activity, whereas the combination can act bactericidal. The streptogramins A display a prolonged activity that even persists after removal of the drug. However, the mode of activity of the streptogramins has not yet been fully elucidated, despite a plethora of biochemical and structural data. RESULTS: The investigation of the crystal structure of the 50S ribosomal subunit from Deinococcus radiodurans in complex with the clinically relevant streptogramins quinupristin and dalfopristin reveals their unique inhibitory mechanism. Quinupristin, a streptogramin B compound, binds in the ribosomal exit tunnel in a similar manner and position as the macrolides, suggesting a similar inhibitory mechanism, namely blockage of the ribosomal tunnel. Dalfopristin, the corresponding streptogramin A compound, binds close to quinupristin directly within the peptidyl transferase centre affecting both A- and P-site occupation by tRNA molecules. CONCLUSIONS: The crystal structure indicates that the synergistic effect derives from direct interaction between both compounds and shared contacts with a single nucleotide, A2062. Upon binding of the streptogramins, the peptidyl transferase centre undergoes a significant conformational transition, which leads to a stable, non-productive orientation of the universally conserved U2585. Mutations of this rRNA base are known to yield dominant lethal phenotypes. It seems, therefore, plausible to conclude that the conformational change within the peptidyl transferase centre is mainly responsible for the bactericidal activity of the streptogramins and the post-antibiotic inhibition of protein synthesis.


Asunto(s)
Antibacterianos/farmacología , Peptidil Transferasas/metabolismo , Ribosomas/efectos de los fármacos , Virginiamicina/análogos & derivados , Antibacterianos/metabolismo , Sitios de Unión/efectos de los fármacos , Cristalización , Deinococcus/efectos de los fármacos , Deinococcus/enzimología , Sinergismo Farmacológico , Peptidil Transferasas/química , ARN Ribosómico 23S/química , ARN Ribosómico 23S/metabolismo , Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo , Ribosomas/química , Ribosomas/enzimología , Virginiamicina/metabolismo , Virginiamicina/farmacología
6.
Structure ; 11(3): 329-38, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12623020

RESUMEN

The azalide azithromycin and the ketolide ABT-773, which were derived by chemical modifications of erythromycin, exhibit elevated activity against a number of penicillin- and macrolide-resistant pathogenic bacteria. Analysis of the crystal structures of the large ribosomal subunit from Deinococcus radiodurans complexed with azithromycin or ABT-773 indicates that, despite differences in the number and nature of their contacts with the ribosome, both compounds exert their antimicrobial activity by blocking the protein exit tunnel. In contrast to all macrolides studied so far, two molecules of azithromycin bind simultaneously to the tunnel. The additional molecule also interacts with two proteins, L4 and L22, implicated in macrolide resistance. These studies illuminated and rationalized the enhanced activity of the drugs against specific macrolide-resistant bacteria.


Asunto(s)
Antibacterianos/química , Azitromicina/química , Eritromicina/química , Cetólidos , Antibacterianos/metabolismo , Azitromicina/metabolismo , Eritromicina/análogos & derivados , Eritromicina/metabolismo , ARN Ribosómico , Ribosomas/metabolismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...