Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
2.
Res Sq ; 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38496406

RESUMEN

Chronic, low-grade inflammation has been associated with motivational deficits in patients with major depression (MD). In turn, impaired motivation has been linked to poor quality of life across psychiatric disorders. We thus determined effects of the anti-inflammatory drug infliximab-a potent tumor necrosis factor (TNF) antagonist-on behavioral and neural measures of motivation in 42 medically stable, unmedicated MD patients with a C-reactive protein > 3mg/L. All patients underwent a double-blind, placebo-controlled, single-dose, randomized clinical trial with infliximab (5mg/kg) versus placebo. Behavioral performance on an effort-based decision-making task, self-report questionnaires, and neural responses during event-related functional magnetic resonance imaging were assessed at baseline and 2 weeks following infusion. We found that relative to placebo, patients receiving infliximab were more willing to expend effort for rewards. Moreover, increase in effortful choices was associated with reduced TNF signaling as indexed by decreased soluble TNF receptor type 2 (sTNFR2). Changes in effort-based decision-making and sTNFR2 were also associated with changes in task-related activity in a network of brain areas, including dmPFC, ventral striatum, and putamen, as well as the functional connectivity between these regions. Changes in sTNFR2 also mediated the relationships between drug condition and behavioral and neuroimaging measures. Finally, changes in self-reported anhedonia symptoms and effort-discounting behavior were associated with greater responses of an independently validated whole-brain predictive model (aka "neural signature") sensitive to monetary rewards. Taken together, these data support the use of anti-inflammatory treatment to improve effort-based decision-making and associated brain circuitry in depressed patients with high inflammation.

4.
Magn Reson Imaging ; 95: 27-38, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36265696

RESUMEN

Brain structural changes in HIV identified by voxel-based morphometry (VBM) alone could arise from a variety of causes that are difficult to distinguish without further information, such as cortical thickness (CT), gyrification index (GI) or sulcal depth (SD). Hence, our goal was to assess these additional metrics in HIV using high-resolution 3D T1-weighted images and investigate if surface-based morphometric (SBM) analysis would reveal significant changes in the gray matter (GM) and white matter (WM) volumes combined with alterations in cortical thickness (CT), gyrification index (GI), sulcal depth (SD). T1-w magnetization-prepared-rapid-acquisition gradient-echo (MP-RAGE) scans were acquired in 27 HIV-infected individuals on antiretroviral therapy (ART) and 15 HIV-uninfected healthy controls using a 3T MRI scanner equipped with a 16-channel head "receive" and a quadrature body "transmit" coil. Voxel-based and surface-based morphometric analyses were performed using the MATLAB based SPM Computational Anatomy Toolbox (CAT12.7(1700)). HIV-infected patients showed significantly altered GM and WM volumes, CT, GI, and SD, in multiple brain regions. This study showed the association of altered GM and WM volumes in local brain regions with the changes in region-wise CT, GI and SD measures of HIV-infected patients, especially in the parahippocampal and middle frontal regions as compared to uninfected healthy controls. The outcome of this study suggests that the findings of VBM may not necessarily indicate the volumetric shrinkage or increase alone, but might also be due to altered CT, GI, or SD. Correlation analysis showed a significantly accelerated gray matter loss with age in HIV-infected individuals compared to uninfected healthy controls.


Asunto(s)
Infecciones por VIH , Sustancia Blanca , Humanos , Sustancia Blanca/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Infecciones por VIH/diagnóstico por imagen , Infecciones por VIH/tratamiento farmacológico
6.
Mol Psychiatry ; 27(10): 4113-4121, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35927580

RESUMEN

Increased inflammation in major depressive disorder (MDD) has been associated with low functional connectivity (FC) in corticostriatal reward circuits and symptoms of anhedonia, relationships which may involve the impact of inflammation on synthesis and release of dopamine. To test this hypothesis while establishing a platform to examine target engagement of potential therapies in patients with increased inflammation, medically stable unmedicated adult MDD outpatients enrolled to have a range of inflammation (as indexed by plasma C-reactive protein [CRP] levels) were studied at two visits involving acute challenge with the dopamine precursor levodopa (L-DOPA; 250 mg) and placebo (double-blind, randomized order ~1-week apart). The primary outcome of resting-state (rs)FC in a classic ventral striatum to ventromedial prefrontal cortex reward circuit was calculated using a targeted, a priori approach. Data available both pre- and post-challenge (n = 31/40) established stability of rsFC across visits and determined CRP > 2 mg/L as a cut-point for patients exhibiting positive FC responses (post minus pre) to L-DOPA versus placebo (p < 0.01). Higher post-L-DOPA FC in patients with CRP > 2 mg/L was confirmed in all patients (n = 40) where rsFC data were available post-challenge (B = 0.15, p = 0.006), and in those with task-based (tb)FC during reward anticipation (B = 0.15, p = 0.013). While effort-based motivation outside the scanner positively correlated with rsFC independent of treatment or CRP, change in anhedonia scores negatively correlated with rsFC after L-DOPA only in patients with CRP > 2 mg/L (r = -0.56, p = 0.012). FC in reward circuitry should be further validated in larger samples as a biomarker of target engagement for potential treatments including dopaminergic agents in MDD patients with increased inflammation.


Asunto(s)
Anhedonia , Trastorno Depresivo Mayor , Adulto , Humanos , Anhedonia/fisiología , Dopamina , Trastorno Depresivo Mayor/tratamiento farmacológico , Vías Nerviosas , Depresión , Levodopa/uso terapéutico , Imagen por Resonancia Magnética , Recompensa , Inflamación/metabolismo
7.
Mol Psychiatry ; 26(12): 7384-7392, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34535767

RESUMEN

Inflammation impacts basal ganglia motor circuitry in association with psychomotor retardation, a key symptom of major depression (MD). We previously reported associations between circulating protein inflammatory biomarkers and psychomotor slowing as measured by neuropsychological tests probing psychomotor speed in patients with MD. To discover novel transcriptional signatures in peripheral blood immune cells related to psychomotor slowing, microarray data were analyzed in a primary cohort of 88 medically-stable, unmedicated, ambulatory MD patients. Results were confirmed and extended in a second cohort of 57 patients with treatment resistant depression (TRD) before and after anti-inflammatory challenge with the tumor necrosis factor antagonist infliximab versus placebo. Composite scores reflecting pure motor and cognitive-motor processing speed were linearly associated with 403 and 266 gene transcripts in each cohort, respectively (|R| > 0.30, p < 0.01), that were enriched for cytokine signaling and glycolysis-related pathways (p < 0.05). Unsupervised clustering in the primary cohort revealed two psychomotor slowing-associated gene co-expression modules that were enriched for interferon, interleukin-6, aerobic glycolysis, and oxidative phosphorylation pathways (p < 0.05, q < 0.1). Transcripts were predominantly derived from monocytes, plasmacytoid dendritic cells, and natural killer cells (p's < 0.05). In infliximab-treated TRD patients with high plasma C-reactive protein concentrations (>5 mg/L), two differential co-expression modules enriched for oxidative stress and mitochondrial degradation were associated with improvements in psychomotor reaction time (p < 0.05). These results indicate that inflammatory signaling and associated metabolic reprogramming in peripheral blood immune cells are associated with systemic inflammation in depression and may affect relevant brain circuits to promote psychomotor slowing.


Asunto(s)
Trastorno Depresivo Mayor , Trastorno Depresivo Resistente al Tratamiento , Proteína C-Reactiva/metabolismo , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/metabolismo , Trastorno Depresivo Resistente al Tratamiento/tratamiento farmacológico , Humanos , Inflamación , Desempeño Psicomotor , Transcriptoma/genética
8.
Transl Psychiatry ; 11(1): 456, 2021 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-34482366

RESUMEN

Inflammation is associated with the development of anhedonia in major depression (MD), but the pathway by which inflammatory molecules gain access to the brain and lead to anhedonia is not clear. Molecules of the kynurenine pathway (KP), which is activated by inflammation, readily influx into the brain and generate end products that alter brain chemistry, disrupt circuit functioning, and result in the expression of inflammatory behaviors such as anhedonia. We examined the impact of plasma and CSF KP metabolites on brain chemistry and neural function using multimodal neuroimaging in 49 depressed subjects. We measured markers of glial dysfunction and distress including glutamate (Glu) and myo-inositol in the left basal ganglia using magnetic resonance spectroscopy (MRS); metrics of local activity coherence (regional homogeneity, ReHo) and functional connectivity from resting-state functional MRI measures; and anhedonia from the Inventory for Depressive Symptoms-Self Report Version (IDS-SR). Plasma kynurenine/tryptophan (KYN/TRP) ratio and cerebrospinal fluid (CSF) 3-hydroxykynurenine (3HK) were associated with increases in left basal ganglia myo-inositol. Plasma kynurenic acid (KYNA) and KYNA/QA were associated with decreases and quinolinic acid (QA) with increases in left basal ganglia Glu. Plasma and CSF KP were associated with decreases in ReHo in the basal ganglia and dorsomedial prefrontal regions (DMPFC) and impaired functional connectivity between these two regions. DMPFC-basal ganglia mediated the effect of plasma and CSF KP on anhedonia. These findings highlight the pathological impact of KP system dysregulation in mediating inflammatory behaviors such as anhedonia.


Asunto(s)
Depresión , Quinurenina , Ganglios Basales/diagnóstico por imagen , Depresión/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Recompensa
9.
Pharmacol Rev ; 73(3): 1084-1117, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34285088

RESUMEN

Exogenous administration of inflammatory stimuli to humans and laboratory animals and chronic endogenous inflammatory states lead to motivational deficits and ultimately anhedonia, a core and disabling symptom of depression present in multiple other psychiatric disorders. Inflammation impacts neurotransmitter systems and neurocircuits in subcortical brain regions including the ventral striatum, which serves as an integration point for reward processing and motivational decision-making. Many mechanisms contribute to these effects of inflammation, including decreased synthesis, release and reuptake of dopamine, increased synaptic and extrasynaptic glutamate, and activation of kynurenine pathway metabolites including quinolinic acid. Neuroimaging data indicate that these inflammation-induced neurotransmitter effects manifest as decreased activation of ventral striatum and decreased functional connectivity in reward circuitry involving ventral striatum and ventromedial prefrontal cortex. Neurocircuitry changes in turn mediate nuanced effects on motivation that include decreased willingness to expend effort for reward while maintaining the ability to experience reward. Taken together, the data reveal an inflammation-induced pathophysiologic phenotype that is agnostic to diagnosis. Given the many mechanisms involved, this phenotype represents an opportunity for development of novel and/or repurposed pharmacological strategies that target inflammation and associated cellular and systemic immunometabolic changes and their downstream effects on the brain. To date, clinical trials have failed to capitalize on the unique nature of this transdiagnostic phenotype, leaving the field bereft of interpretable data for meaningful clinical application. However, novel trial designs incorporating established targets in the brain and/or periphery using relevant outcome variables (e.g., anhedonia) are the future of targeted therapy in psychiatry. SIGNIFICANCE STATEMENT: Emerging understanding of mechanisms by which peripheral inflammation can affect the brain and behavior has created unprecedented opportunities for development of pharmacological strategies to treat deficits in motivation including anhedonia, a core and disabling symptom of depression well represented in multiple psychiatric disorders. Mechanisms include inflammation and cellular and systemic immunometabolism and alterations in dopamine, glutamate, and kynurenine metabolites, revealing a target-rich environment that nevertheless has yet to be fully exploited by current clinical trial designs and drugs employed.


Asunto(s)
Anhedonia , Encéfalo , Animales , Encéfalo/diagnóstico por imagen , Humanos , Inflamación , Motivación , Recompensa
10.
J Psychiatr Res ; 129: 53-60, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32570089

RESUMEN

BACKGROUND: Patients with major depressive disorder (MDD) are at high risk for suicide. As the worst outcome of MDD and common self-concealment in patients with suicide risk, studies of biomarkers may provide useful tools for suicide prevention and treatment. METHODS: This study recruited 168 patients with MDD from the Objective Diagnostic Markers and Personalized Intervention in MDD patients (ODMPIM), including 50 patients with suicide risk. Based on previous evidence and hypothesis, 23 targeted serum biomarkers involving immune-inflammation, neurotrophins, hypothalamic-pituitary-adrenal (HPA) axis and metabolism, were measured. We used path analysis and principal components analysis (PCA) to clarify the associations among serum biomarkers, childhood adversities, adulthood life events, severity of depression and suicide risk. RESULTS: We identified that patients with suicide risk had a higher level of inflammatory markers in serum than patients without suicide risk (P < 0.001), especially chemokine (C-X-C motif) ligand 1 (CXCL-1). After using the Bonferroni correction, there were no differences in biomarkers related to neurotrophins, HPA-axis and metabolism. In addition, a higher proportion of patients with suicide risk had adulthood adversity (assessed by Life Events Scale) (P = 0.003). Intriguingly, path analysis demonstrated that the association between adulthood adversity and suicide risk mainly depended on severity of depression and inflammatory index. CONCLUSION: This study highlights the possible role of inflammation involved in suicide risk of MDD patients. Inflammatory markers have the potential for early identification and then reducing suicidal behaviors or becoming novel treatment targets in suicide risk management.


Asunto(s)
Trastorno Depresivo Mayor , Suicidio , Adulto , Biomarcadores , Niño , Trastorno Depresivo Mayor/epidemiología , Humanos , Inflamación , Estrés Psicológico
11.
Brain Behav Immun ; 88: 193-202, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32387344

RESUMEN

Bidirectional relationships between inflammation and metabolic dysfunction may contribute to the pathophysiology of psychiatric illnesses like depression. Metabolic disturbances drive inflammation, which in turn exacerbate metabolic outcomes including insulin resistance. Both inflammatory (e.g. endotoxin, vaccination) and metabolic challenges (e.g. glucose ingestion) have been shown to affect activity and functional connectivity (FC) in brain regions that subserve reward and motor processing. We previously reported relationships between elevated concentrations of endogenous inflammatory markers including C-reactive protein (CRP) and low corticostriatal FC, which correlated with symptoms of anhedonia and motor slowing in major depression (MD). Herein, we examined whether similar relationships were observed between plasma markers related to glucose metabolism (non-fasting concentrations of glucose, insulin, leptin, adiponectin and resistin) in 42 medically-stable, unmedicated MD outpatients who underwent fMRI. A targeted, hypothesis-driven approach was used to assess FC between seeds in subdivisions of the ventral and dorsal striatum and a region in ventromedial prefrontal cortex (VS-vmPFC), which was previously found to correlate with both inflammation and symptoms of anhedonia and motor slowing. Associations between FC and gene expression signatures were also explored. A composite score of all 5 glucose-related markers (with increasing values reflecting higher concentrations) was negatively correlated with both ventral striatum (VS)-vmPFC (r = -0.33, p < 0.05) and dorsal caudal putamen (dcP)-vmPFC (r = -0.51, p < 0.01) FC, and remained significant after adjusting for covariates including body mass index (p < 0.05). Moreover, an interaction between the glucose-related composite score and CRP was observed for these relationships (F[2,33] = 4.3, p < 0.05) whereby significant correlations between the glucose-related metabolic markers and FC was found only in patients with high plasma CRP (>3 mg/L; r = -0.61 to -0.81, p < 0.05). Insulin and resistin were the individual markers most predictive of VS-vmPFC and dcP-mPFC FC, respectively, and insulin, resistin and CRP clustered together and in association with both LV-vmPFC and dcP-vmPFC in principal component analyses. Exploratory whole blood gene expression analyses also confirmed that gene probes negatively associated with FC were enriched for both inflammatory and metabolic pathways (FDR p < 0.05). These results provide preliminary evidence that inflammation and metabolic dysfunction contribute jointly to deficits in reward and motor circuits in MD. Future studies using fasting samples and longitudinal and interventional approaches are required to further elucidate the respective contributions of inflammation and metabolic dysfunction to circuits and symptoms relevant to motivation and motor activity, which may have treatment implications for patients with psychiatric illnesses like depression.


Asunto(s)
Depresión , Trastorno Depresivo Mayor , Proteína C-Reactiva/análisis , Depresión/genética , Trastorno Depresivo Mayor/genética , Humanos , Inflamación , Recompensa
12.
NPJ Schizophr ; 6(1): 8, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32238816

RESUMEN

Patients with schizophrenia exhibit psychomotor deficits that are associated with poor functional outcomes. One pathway that may be associated with psychomotor slowing is inflammation. Inflammatory markers have been shown to be elevated in patients with schizophrenia and are associated with psychomotor deficits in both animal and human studies. Forty-three patients with schizophrenia and 29 healthy controls were recruited and underwent a battery of psychomotor tasks. The following immune measures in peripheral blood were assayed: IL-6, IL-1 beta, IL-10, TNF, MCP-1, IL-6sr, IL-1RA, and TNFR2. Generalized linear models were used to determine which immune markers, in addition to their interaction with diagnosis, were associated with performance on the psychomotor tasks. As expected, patients with schizophrenia demonstrated slower performance compared with healthy controls on the finger tapping test (FTT, tested on dominant and non-dominant hands), trail making test (TMT), and symbol coding test (SC). Interactive effects with diagnosis were found for TNF, IL-10, IL-6sr, and TNFR2 for the FTT (dominant), IL-10 and IL-6sr for FTT (non-dominant), TNF and IL-10 for TMT and TNF, IL-10, IL-6sr, TNFR2, and IL-1RA for SC. The results of this study provide evidence that peripheral inflammatory markers contribute to psychomotor slowing in patients with schizophrenia. These data are consistent with a growing literature, demonstrating that inflammation may target the basal ganglia to contribute to psychomotor deficits as is seen in other psychiatric disorders such as depression. These data also indicate that psychomotor speed may be a relevant construct to target in studies of the immune system in schizophrenia.

13.
Brain Behav Immun ; 88: 161-165, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32198016

RESUMEN

Inflammation and altered glucose metabolism are two pathways implicated in the pathophysiology of major depressive disorder (MDD). We have previously shown that high inflammation as measured by C-reactive protein (CRP) in MDD patients is associated with symptoms of anhedonia, a core symptom of MDD, along with deficits in dopaminergic reward circuitry. Increased inflammation can shift metabolic demand and reprogram cellular energy sources, which may collectively impact the brain and reward processing to contribute to symptoms of anhedonia. To determine whether immunometabolic gene signatures were enriched in immune cells of depressed patients with increased inflammation and anhedonia, we examined whole-blood gene expression microarray (Illumina HumanHT-12) data from unmedicated, medically-stable patients with MDD (n = 93). Patients were considered to have increased inflammation based on High (>3mg/L) versus Low (≤3mg/L) plasma CRP, and further classified as having a self-reported phenotype of High (n = 30, 33rd percentile) versus Low (n = 32, 67th percentile) Anhedonia. Functional enrichment of gene pathways was assessed by Gene Set Enrichment Analysis (GSEA) using the KEGG pathway database. Pathways related to glucose metabolism (insulin signaling, insulin resistance, HIF-1, PI3K/AKT signaling), cancer (e.g., genes related to insulin and PI3K/AKT signaling), and inflammation (B cell, T cell and Fc receptor signaling) were specifically enriched in patients with both High CRP and High Anhedonia (all FDR q < 0.25). Within patients with High CRP in GSEA, the insulin signaling pathway was the top enriched pathway in patients with High versus Low Anhedonia (n = 10 and 9 respectively), which was driven by genes expressed predominantly in monocytes (z = 2.95, p < 0.01). Conversely, within patients with High Anhedonia, in addition to enrichment of immunometabolic pathways, the tyrosine metabolism pathway was also reduced in patients with High versus Low CRP (n = 20 and 10 respectively). Of note, enrichment of immunometabolic pathways was confirmed in complementary linear regression analyses examining pathways associated with a CRP-by-Anhedonia interaction term while controlling for clinical covariates in all patients (n = 93). These results indicate that increased glucose and low tyrosine metabolism define a subset of depressed patients with high inflammation and anhedonia. Enrichment of cancer-related pathways driven by metabolic genes also suggests a shift in immune cell metabolism from oxidative phosphorylation to glycolysis. Together these data suggest that anhedonia in MDD with high CRP involves both immunometabolic shifts and reduced dopamine precursor availability.


Asunto(s)
Trastorno Depresivo Mayor , Resistencia a la Insulina , Anhedonia , Proteína C-Reactiva/análisis , Depresión/genética , Trastorno Depresivo Mayor/genética , Humanos , Resistencia a la Insulina/genética , Fosfatidilinositol 3-Quinasas , Tirosina
14.
Neuropsychopharmacology ; 45(7): 1086-1096, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32109936

RESUMEN

The etiologic pathways leading to neuropsychiatric diseases remain poorly defined. As genomic technologies have advanced over the past several decades, considerable progress has been made linking neuropsychiatric disorders to genetic underpinnings. Interest and consideration of nongenetic risk factors (e.g., lead exposure and schizophrenia) have, in contrast, lagged behind heritable frameworks of explanation. Thus, the association of neuropsychiatric illness to environmental chemical exposure, and their potential interactions with genetic susceptibility, are largely unexplored. In this review, we describe emerging approaches for considering the impact of chemical risk factors acting alone and in concert with genetic risk, and point to the potential role of epigenetics in mediating exposure effects on transcription of genes implicated in mental disorders. We highlight recent examples of research in nongenetic risk factors in psychiatric disorders that point to potential shared biological mechanisms-synaptic dysfunction, immune alterations, and gut-brain interactions. We outline new tools and resources that can be harnessed for the study of environmental factors in psychiatric disorders. These tools, combined with emerging experimental evidence, suggest that there is a need to broadly incorporate environmental exposures in psychiatric research, with the ultimate goal of identifying modifiable risk factors and informing new treatment strategies for neuropsychiatric disease.


Asunto(s)
Exposición a Riesgos Ambientales/efectos adversos , Trastornos Mentales/etiología , Humanos
15.
Neuropsychopharmacology ; 45(6): 998-1007, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31940661

RESUMEN

Kynurenine pathway (KP) metabolites are believed to be a link between inflammation and depression through effects on brain glutamate receptors. However, neither the relationship between plasma and cerebrospinal fluid (CSF) KP metabolites nor their association with inflammatory mediators is well-established in depression. Moreover, the clinical profile associated with combined activation of plasma inflammatory and kynurenine pathways is unknown. Accordingly, plasma and CSF-KP metabolites and inflammatory markers along with depressive symptoms and antidepressant treatment response were measured in 72 unmedicated depressed patients. Following bivariate analyses, component factors representing immune and kynurenine variables in the plasma and CSF were extracted and were used to examine directionality of associations in a path model. In addition, patients were clustered using individual markers that most accounted for the association between plasma immune and KP systems. Path analysis revealed a directional association extending from plasma inflammatory markers to plasma kynurenines, to CSF kynurenines. Among immune markers, plasma tumor necrosis factor (TNF) was robustly associated with plasma kynurenine (KYN) and KYN/tryptophan (TRP), which was in turn significantly associated with CSF KYN, kynurenic acid, and quinolinic acid. Clustering of patients based on plasma TNF and KYN/TRP yielded subgroups of high (N = 17) and low (N = 55) TNF-KYN/TRP groups. High TNF-KYN/TRP subjects exhibited greater depression severity, anhedonia, and treatment nonresponse. In conclusion, plasma-KP metabolites may mediate an inflammation-associated depressive symptom profile via CNS KP metabolites that can serve as a target for intervention at the level of inflammation, peripheral KYN metabolism, KYN transport to the brain, or effects of KP metabolites on glutamate receptors.


Asunto(s)
Depresión , Quinurenina , Humanos , Inflamación , Ácido Quinurénico , Triptófano
16.
Genes Brain Behav ; 19(1): e12555, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-30624029

RESUMEN

Oxytocin (OT) effects on brain function and behavior are mediated by the oxytocin receptor (OXTR). The distribution of OXTR in the brain can profoundly influence social behavior. Emerging evidence suggests that DNA methylation of OXTR influences OXTR expression. Previously, we conducted a pharmaco-functional Magnetic Resonance Imaging (fMRI) study in which healthy subjects were randomized to 24 IU intranasal OT or placebo and imaged with fMRI while playing a dyadic social interaction task known as the iterated Prisoner's Dilemma (PD) game with same-sex partners. Here, we investigate whether DNA methylation of OXTR modulates the effect of intranasal OT on the neural response to positive and negative social interactions in the PD game. OXTR methylation did not modulate OT effects within brain regions where we previously reported OT effects in response to reciprocated (caudate nucleus) and unreciprocated cooperation (amygdala and anterior insula). However, OXTR methylation did modulate OT effects on the response to both reciprocated and unreciprocated cooperation in other brain regions such as the precuneus and visual cortex. Further restricting the analysis to OXTR rs53576 GG individuals revealed that OXTR methylation modulated OT effects on the precuneus response to reciprocated cooperation in men, the lateral septum response to reciprocated cooperation in women, and the visual cortex response to unreciprocated cooperation in men. These results suggest that OXTR methylation status may influence OT effects on mentalizing, attention and reward processing during social interactions. OXTR methylation may be important to consider if exogenous OT is used to treat social behavioral disorders in the future.


Asunto(s)
Encéfalo/efectos de los fármacos , Metilación de ADN , Oxitocina/farmacología , Receptores de Oxitocina/genética , Interacción Social , Encéfalo/metabolismo , Encéfalo/fisiología , Femenino , Humanos , Masculino , Polimorfismo de Nucleótido Simple , Adulto Joven
17.
Mol Psychiatry ; 25(6): 1301-1311, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-29895893

RESUMEN

Peripheral blood C-reactive protein (CRP) is a biomarker used clinically to measure systemic inflammation and is reproducibly increased in a subset of patients with major depressive disorder (MDD). Furthermore, increased peripheral blood CRP in MDD has been associated with altered reward circuitry and increased brain glutamate in relation with symptoms of anhedonia. Nevertheless, the relationship between peripheral CRP and other peripheral and central markers of inflammation in depressed patients has not been established. Plasma (n = 89) and CSF (n = 73) was collected from medically stable, currently unmedicated adult outpatients with MDD. Associations among plasma and CSF CRP and plasma and CSF inflammatory cytokines (interleukin [IL]-6, tumor necrosis factor [TNF] and IL-1beta) and their soluble receptors/antagonists were examined. Relationships between plasma and CSF inflammatory markers and depressive symptoms including anhedonia and reduced motivation (RM) were also explored. Plasma CRP was correlated with multiple plasma inflammatory markers (all p < 0.05), and a strong correlation was found between plasma and CSF CRP (r = 0.855, p < 0.001). CSF CRP in turn correlated with CSF cytokine receptors/antagonists (all p < 0.05). Principal component analyses revealed clusters of CSF inflammatory markers that were associated with high plasma CRP (>3 mg/L) and correlated with depressive symptom severity. These findings were driven by CSF TNF, which correlated with RM (r = 0.236, p = 0.045), and CSF IL-6 soluble receptor, which correlated with anhedonia (r = 0.301, p = 0.010) in the sample as a whole and particularly females. CRP appears to be a peripheral biomarker that reflects peripheral and central inflammation and seems well-suited for guiding immunotherapies targeting TNF and IL-6 in patients with MDD.


Asunto(s)
Proteína C-Reactiva/análisis , Trastorno Depresivo Mayor/sangre , Inflamación/sangre , Adulto , Anciano , Citocinas/sangre , Citocinas/inmunología , Depresión/sangre , Femenino , Humanos , Masculino , Persona de Mediana Edad , Plasma/química , Plasma/inmunología , Adulto Joven
19.
Lancet Psychiatry ; 7(1): 93-108, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31669058

RESUMEN

There is increasing recognition in the neurological and psychiatric literature of patients with so-called isolated psychotic presentations (ie, with no, or minimal, neurological features) who have tested positive for neuronal autoantibodies (principally N-methyl-D-aspartate receptor antibodies) and who have responded to immunotherapies. Although these individuals are sometimes described as having atypical, mild, or attenuated forms of autoimmune encephalitis, some authors feel that that these cases are sufficiently different from typical autoimmune encephalitis to establish a new category of so-called autoimmune psychosis. We briefly review the background, discuss the existing evidence for a form of autoimmune psychosis, and propose a novel, conservative approach to the recognition of possible, probable, and definite autoimmune psychoses for use in psychiatric practice. We also outline the investigations required and the appropriate therapeutic approaches, both psychiatric and immunological, for probable and definite cases of autoimmune psychoses, and discuss the ethical issues posed by this challenging diagnostic category.


Asunto(s)
Autoanticuerpos/sangre , Consenso , Trastornos Psicóticos/diagnóstico , Trastornos Psicóticos/terapia , Receptores de N-Metil-D-Aspartato , Adulto , Encefalitis , Femenino , Enfermedad de Hashimoto , Humanos , Neuronas/inmunología
20.
Brain Behav Immun Health ; 1: 100001, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38377423

RESUMEN

This Editorial discusses the missions and scope of the new Gold Open Access journal "Brain, Behavior and Immunity (BBI) - Health" and how it complements the activity of the established BBI journal.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA