Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Sens ; 8(9): 3294-3306, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37607403

RESUMEN

Over the past decade, super-resolution ultrasound localization microscopy (SR-ULM) has revolutionized ultrasound imaging with its capability to resolve the microvascular structures below the ultrasound diffraction limit. The introduction of this imaging technique enables the visualization, quantification, and characterization of tissue microvasculature. The early implementations of SR-ULM utilize microbubbles (MBs) that require a long image acquisition time due to the requirement of capturing sparsely isolated microbubble signals. The next-generation SR-ULM employs nanodroplets that have the potential to significantly reduce the image acquisition time without sacrificing the resolution. This review discusses various nanodroplet-based ultrasound localization microscopy techniques and their corresponding imaging mechanisms. A summary is given on the preclinical applications of SR-ULM with nanodroplets, and the challenges in the clinical translation of nanodroplet-based SR-ULM are presented while discussing the future perspectives. In conclusion, ultrasound localization microscopy is a promising microvasculature imaging technology that can provide new diagnostic and prognostic information for a wide range of pathologies, such as cancer, heart conditions, and autoimmune diseases, and enable personalized treatment monitoring at a microlevel.


Asunto(s)
Microscopía , Neoplasias , Humanos , Microscopía/métodos , Ultrasonografía/métodos , Microburbujas , Microvasos/diagnóstico por imagen
2.
Front Oncol ; 12: 978164, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36387122

RESUMEN

Objective: Ultrasound imaging provides a fast and safe examination of thyroid nodules. Recently, the introduction of super-resolution imaging technique shows the capability of breaking the Ultrasound diffraction limit in imaging the micro-vessels. The aim of this study was to evaluate its feasibility and value for the differentiation of thyroid nodules. Methods: In this study, B-mode, contrast-enhanced ultrasound, and color Doppler flow imaging examinations were performed on thyroid nodules in 24 patients. Super-resolution imaging was performed to visualize the microvasculature with finer details. Microvascular flow rate (MFR) and micro-vessel density (MVD) within thyroid nodules were computed. The MFR and MVD were used to differentiate the benign and malignant thyroid nodules with pathological results as a gold standard. Results: Super-resolution imaging (SRI) technique can be successfully applied on human thyroid nodules to visualize the microvasculature with finer details and obtain the useful clinical information MVD and MFR to help differential diagnosis. The results suggested that the mean value of the MFR within benign thyroid nodule was 16.76 ± 6.82 mm/s whereas that within malignant thyroid was 9.86 ± 4.54 mm/s. The mean value of the MVD within benign thyroid was 0.78 while the value for malignant thyroid region was 0.59. MFR and MVD within the benign thyroid nodules were significantly higher than those within the malignant thyroid nodules respectively (p < 0.01). Conclusions: This study demonstrates the feasibility of ultrasound super-resolution imaging to show micro-vessels of human thyroid nodules via a clinical ultrasound platform. The important imaging markers, such as MVD and MFR, can be derived from SRI to provide more useful clinical information. It has the potential to be a new tool for aiding differential diagnosis of thyroid nodules.

3.
Ultraschall Med ; 43(6): 592-598, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36206774

RESUMEN

PURPOSE: Detecting and distinguishing metastatic lymph nodes (LNs) from those with benign lymphadenopathy are crucial for cancer diagnosis and prognosis but remain a clinical challenge. A recent advance in super-resolution ultrasound (SRUS) through localizing individual microbubbles has broken the diffraction limit and tracking enabled in vivo noninvasive imaging of vascular morphology and flow dynamics at a microscopic level. In this study we hypothesize that SRUS enables quantitative markers to distinguish metastatic LNs from benign ones in patients with lymphadenopathy. MATERIALS AND METHODS: Clinical contrast-enhanced ultrasound image sequences of LNs from 6 patients with lymph node metastasis and 4 with benign lymphadenopathy were acquired and motion-corrected. These were then used to generate super-resolution microvascular images and super-resolved velocity maps. From these SRUS images, morphological and functional measures were obtained including micro-vessel density, fractal dimension, mean flow speed, and Local Flow Direction Irregularity (LFDI) measuring the variance in local flow direction. These measures were compared between pathologically proven reactive and metastasis LNs. RESULTS: Our initial results indicate that the difference in the indicator of flow irregularity (LFDI) derived from the SRUS images is statistically significant between the two groups. The LFDI is 60% higher in metastatic LNs compared with reactive nodes. CONCLUSION: This pilot study demonstrates the feasibility of super-resolution ultrasound for clinical imaging of lymph nodes and the potential of using the irregularity of local blood flow directions afforded by SRUS for the characterization of LNs.


Asunto(s)
Linfadenopatía , Microscopía , Humanos , Proyectos Piloto , Ganglios Linfáticos/patología , Metástasis Linfática/diagnóstico por imagen , Metástasis Linfática/patología
4.
Artículo en Inglés | MEDLINE | ID: mdl-31562080

RESUMEN

High-frame-rate 3-D ultrasound imaging technology combined with super-resolution processing method can visualize 3-D microvascular structures by overcoming the diffraction-limited resolution in every spatial direction. However, 3-D super-resolution ultrasound imaging using a full 2-D array requires a system with a large number of independent channels, the design of which might be impractical due to the high cost, complexity, and volume of data produced. In this study, a 2-D sparse array was designed and fabricated with 512 elements chosen from a density-tapered 2-D spiral layout. High-frame-rate volumetric imaging was performed using two synchronized ULA-OP 256 research scanners. Volumetric images were constructed by coherently compounding nine-angle plane waves acquired at a pulse repetition frequency of 4500 Hz. Localization-based 3-D super-resolution images of two touching subwavelength tubes were generated from 6000 volumes acquired in 12 s. Finally, this work demonstrates the feasibility of 3-D super-resolution imaging and super-resolved velocity mapping using a customized 2-D sparse array transducer.


Asunto(s)
Imagenología Tridimensional/métodos , Ultrasonografía/métodos , Microburbujas , Fantasmas de Imagen , Procesamiento de Señales Asistido por Computador
5.
Artículo en Inglés | MEDLINE | ID: mdl-31514130

RESUMEN

Major cardiovascular diseases (CVDs) are associated with (regional) dysfunction of the left ventricle. Despite the 3-D nature of the heart and its dynamics, the assessment of myocardial function is still largely based on 2-D ultrasound imaging, thereby making diagnosis heavily susceptible to the operator's expertise. Unfortunately, to date, 3-D echocardiography cannot provide adequate spatiotemporal resolution in real-time. Hence, tri-plane imaging has been introduced as a compromise between 2-D and true volumetric ultrasound imaging. However, tri-plane imaging typically requires high-end ultrasound systems equipped with fully populated matrix array probes embedded with expensive and little flexible electronics for two-stage beamforming. This article presents an advanced ultrasound system for real-time, high frame rate (HFR), and tri-plane echocardiography based on low element count sparse arrays, i.e., the so-called spiral arrays. The system was simulated, experimentally validated, and implemented for real-time operation on the ULA-OP 256 system. Five different array configurations were tested together with four different scan sequences, including multi-line and planar diverging wave transmission. In particular, the former can be exploited to achieve, in tri-plane imaging, the same temporal resolution currently used in clinical 2-D echocardiography, at the expenses of contrast (-3.5 dB) and signal-to-noise ratio (SNR) (-8.7 dB). On the other hand, the transmission of planar diverging waves boosts the frame rate up to 250 Hz, but further compromises contrast (-10.5 dB), SNR (-9.7 dB), and lateral resolution (+46%). In conclusion, despite an unavoidable loss in image quality and sensitivity due to the limited number of elements, HFR tri-plane imaging with spiral arrays is shown to be feasible in real-time and may enable real-time functional analysis of all left ventricular segments of the heart.


Asunto(s)
Ecocardiografía/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Procesamiento de Señales Asistido por Computador , Adulto , Algoritmos , Simulación por Computador , Corazón/diagnóstico por imagen , Humanos , Fantasmas de Imagen , Relación Señal-Ruido
6.
Ultrasound Med Biol ; 45(9): 2456-2470, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31279503

RESUMEN

Contrast-enhanced ultrasound (CEUS) utilising microbubbles shows great potential for visualising lymphatic vessels and identifying sentinel lymph nodes (SLNs) which are valuable for axillary staging in breast cancer patients. However, current CEUS imaging techniques have limitations that affect the accurate visualisation and tracking of lymphatic vessels and SLN. (i) Tissue artefacts and bubble disruption can reduce the image contrast. (ii) Limited spatial and temporal resolution diminishes the amount of information that can be captured by CEUS. (iii) The slow lymph flow makes Doppler-based approaches less effective. This work evaluates on a lymphatic vessel phantom the use of high frame rate (HFR) CEUS for the detection of lymphatic vessels where flow is slow. Specifically, the work particularly investigates the impact of key factors in lymphatic imaging, including ultrasound pressure and flow velocity as well as probe motion during vessel tracking, on bubble disruption and image contrast. Experiments were also conducted to apply HFR CEUS imaging on vasculature in a rabbit popliteal lymph node (LN). Our results show that (i) HFR imaging and singular value decomposition (SVD) filtering can significantly reduce tissue artefacts in the phantom at high clinical frequencies; (ii) the slow flow rate within the phantom makes image contrast and signal persistence more susceptible to changes in ultrasound amplitude or mechanical index (MI), and an MI value can be chosen to reach a compromise between images contrast and bubble disruption under slow flow condition; (iii) probe motion significantly decreases image contrast of the vessel, which can be improved by applying motion correction before SVD filtering; (iv) the optical observation of the impact of ultrasound pressure on HFR CEUS further confirms the importance of optimising ultrasound amplitude and (v) vessels inside rabbit LN with blood flow less than 3 mm/s are clearly visualised.


Asunto(s)
Vasos Linfáticos/diagnóstico por imagen , Ultrasonografía/métodos , Animales , Artefactos , Medios de Contraste , Azul de Evans , Femenino , Procesamiento de Imagen Asistido por Computador , Masculino , Microburbujas , Fantasmas de Imagen , Conejos
7.
Artículo en Inglés | MEDLINE | ID: mdl-31107645

RESUMEN

A number of acoustic super-resolution techniques have recently been developed to visualize microvascular structure and flow beyond the diffraction limit. A crucial aspect of all ultrasound (US) super-resolution (SR) methods using single microbubble localization is time-efficient detection of individual bubble signals. Due to the need for bubbles to circulate through the vasculature during acquisition, slow flows associated with the microcirculation limit the minimum acquisition time needed to obtain adequate spatial information. Here, a model is developed to investigate the combined effects of imaging parameters, bubble signal density, and vascular flow on SR image acquisition time. We find that the estimated minimum time needed for SR increases for slower blood velocities and greater resolution improvement. To improve SR from a resolution of λ /10 to λ /20 while imaging the microvasculature structure modeled here, the estimated minimum acquisition time increases by a factor of 14. The maximum useful imaging frame rate to provide new spatial information in each image is set by the bubble velocity at low blood flows (<150 mm/s for a depth of 5 cm) and by the acoustic wave velocity at higher bubble velocities. Furthermore, the image acquisition procedure, transmit frequency, localization precision, and desired super-resolved image contrast together determine the optimal acquisition time achievable for fixed flow velocity. Exploring the effects of both system parameters and details of the target vasculature can allow a better choice of acquisition settings and provide improved understanding of the completeness of SR information.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Distribución de Poisson , Ultrasonografía/métodos , Algoritmos , Velocidad del Flujo Sanguíneo/fisiología , Humanos , Microburbujas , Microvasos/diagnóstico por imagen , Relación Señal-Ruido
8.
Radiology ; 291(3): 642-650, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30990382

RESUMEN

Background Variations in lymph node (LN) microcirculation can be indicative of metastasis. The identification and quantification of metastatic LNs remains essential for prognosis and treatment planning, but a reliable noninvasive imaging technique is lacking. Three-dimensional super-resolution (SR) US has shown potential to noninvasively visualize microvascular networks in vivo. Purpose To study the feasibility of three-dimensional SR US imaging of rabbit LN microvascular structure and blood flow by using microbubbles. Materials and Methods In vivo studies were carried out to image popliteal LNs of two healthy male New Zealand white rabbits aged 6-8 weeks. Three-dimensional, high-frame-rate, contrast material-enhanced US was achieved by mechanically scanning with a linear imaging probe. Individual microbubbles were identified, localized, and tracked to form three-dimensional SR images and super-resolved velocity maps. Acoustic subaperture processing was used to improve image contrast and to generate enhanced power Doppler and color Doppler images. Vessel size and blood flow velocity distributions were evaluated and assessed by using Student paired t test. Results SR images revealed microvessels in the rabbit LN, with branches clearly resolved when separated by 30 µm, which is less than half of the acoustic wavelength and not resolvable by using power or color Doppler. The apparent size distribution of most vessels in the SR images was below 80 µm and agrees with micro-CT data, whereas most of those detected with Doppler techniques were larger than 80 µm in the images. The blood flow velocity distribution indicated that most of the blood flow in rabbit popliteal LN was at velocities lower than 5 mm/sec. Conclusion Three-dimensional super-resolution US imaging using microbubbles allows noninvasive nonionizing visualization and quantification of lymph node microvascular structures and blood flow dynamics with resolution below the wave diffraction limit. This technology has potential for studying the physiologic functions of the lymph system and for clinical detection of lymph node metastasis. Published under a CC BY 4.0 license. Online supplemental material is available for this article.


Asunto(s)
Imagenología Tridimensional/métodos , Ganglios Linfáticos , Microburbujas , Ultrasonografía/métodos , Animales , Estudios de Factibilidad , Ganglios Linfáticos/irrigación sanguínea , Ganglios Linfáticos/diagnóstico por imagen , Masculino , Microvasos/diagnóstico por imagen , Conejos
9.
Artículo en Inglés | MEDLINE | ID: mdl-30908211

RESUMEN

Localization-based ultrasound super-resolution imaging using microbubble contrast agents and phase-change nano-droplets has been developed to visualize microvascular structures beyond the diffraction limit. However, the long data acquisition time makes the clinical translation more challenging. In this study, fast acoustic wave sparsely activated localization microscopy (fast-AWSALM) was developed to achieve super-resolved frames with sub-second temporal resolution, by using low-boiling-point octafluoropropane nanodroplets and high frame rate plane waves for activation, destruction, as well as imaging. Fast-AWSALM was demonstrated on an in vitro microvascular phantom to super-resolve structures that could not be resolved by conventional B-mode imaging. The effects of the temperature and mechanical index on fast-AWSALM was investigated. Experimental results show that sub-wavelength micro-structures as small as 190 lm were resolvable in 200 ms with plane-wave transmission at a center frequency of 3.5 MHz and a pulse repetition frequency of 5000 Hz. This is about a 3.5 fold reduction in point spread function full-width-half-maximum compared to that measured in conventional B-mode, and two orders of magnitude faster than the recently reported AWSALM under a non-flow/very slow flow situations and other localization based methods. Just as in AWSALM, fast-AWSALM does not require flow, as is required by current microbubble based ultrasound super resolution techniques. In conclusion, this study shows the promise of fast-AWSALM, a super-resolution ultrasound technique using nanodroplets, which can generate super-resolution images in milli-seconds and does not require flow.

10.
Artículo en Inglés | MEDLINE | ID: mdl-30676955

RESUMEN

Ultrasound super-resolution techniques use the response of microbubble (MB) contrast agents to visualize the microvasculature. Techniques that localize isolated bubble signals first require detection algorithms to separate the MB and tissue responses. This work explores the three main MB detection techniques for super-resolution of microvasculature. Pulse inversion (PI), differential imaging (DI), and singular value decomposition (SVD) filtering were compared in terms of the localization accuracy, precision, and contrast-to-tissue ratio. MB responses were simulated based on the properties of Sonovue and using the Marmottant model. Nonlinear propagation through tissue was modeled using the k-Wave software package. For the parameters studied, the results show that PI is most appropriate for low frequency applications, but also most dependent on transducer bandwidth. SVD is preferable for high frequency acquisition where localization precision on the order of a few microns is possible. PI is largely independent of flow direction and speed compared to SVD and DI, so is appropriate for visualizing the slowest flows and tortuous vasculature. SVD is unsuitable for stationary MBs and can introduce a localization error on the order of hundreds of microns over the speed range 0-2 mm/s and flow directions from lateral (parallel to probe) to axial (perpendicular to probe). DI is only suitable for flow rates >0.5 mm/s or as flow becomes more axial. Overall, this study develops an MB and tissue nonlinear simulation platform to improve understanding of how different MB detection techniques can impact the super-resolution process and explores some of the factors influencing the suitability of each.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Microburbujas , Microvasos/diagnóstico por imagen , Modelos Biológicos , Ultrasonografía/métodos , Algoritmos , Simulación por Computador , Fantasmas de Imagen , Transductores
11.
Artículo en Inglés | MEDLINE | ID: mdl-29969392

RESUMEN

The capability of accumulating microbubbles using ultrasound could be beneficial for enhancing targeted drug delivery. When microbubbles are used to deliver a therapeutic payload, there is a need to track them, for a localized release of the payload. In this paper, a method for localizing microbubble accumulation with fast image guidance is presented. A linear array transducer performed trapping of microbubble populations interleaved with plane wave imaging, through the use of a composite pulse sequence. The acoustic trap in the pressure field was created parallel with the direction of flow in a model of a vessel section. The acoustic trapping force resultant from the large gradients in the acoustic field was engendered to directly oppose the flowing microbubbles. This was demonstrated numerically with field simulations, and experimentally using an Ultrasound Array Research Platform II. SonoVue microbubbles at clinically relevant concentrations were pumped through a tissue-mimicking flow phantom and exposed to either the acoustic trap or a control ultrasonic field composed of a single-peak acoustic radiation force beam. Under the flow condition at a shear rate of 433 s-1, the use of the acoustic trap led to lower speed estimations ( ) in the center of the acoustic field, and an enhancement of 71% ± 28%( ) in microbubble image brightness.

12.
Artículo en Inglés | MEDLINE | ID: mdl-29733283

RESUMEN

The structure of microvasculature cannot be resolved using conventional ultrasound (US) imaging due to the fundamental diffraction limit at clinical US frequencies. It is possible to overcome this resolution limitation by localizing individual microbubbles through multiple frames and forming a superresolved image, which usually requires seconds to minutes of acquisition. Over this time interval, motion is inevitable and tissue movement is typically a combination of large- and small-scale tissue translation and deformation. Therefore, super-resolution (SR) imaging is prone to motion artifacts as other imaging modalities based on multiple acquisitions are. This paper investigates the feasibility of a two-stage motion estimation method, which is a combination of affine and nonrigid estimation, for SR US imaging. First, the motion correction accuracy of the proposed method is evaluated using simulations with increasing complexity of motion. A mean absolute error of 12.2 was achieved in simulations for the worst-case scenario. The motion correction algorithm was then applied to a clinical data set to demonstrate its potential to enable in vivo SR US imaging in the presence of patient motion. The size of the identified microvessels from the clinical SR images was measured to assess the feasibility of the two-stage motion correction method, which reduced the width of the motion-blurred microvessels to approximately 1.5-fold.


Asunto(s)
Interpretación de Imagen Asistida por Computador/métodos , Extremidad Inferior/diagnóstico por imagen , Ultrasonografía/métodos , Algoritmos , Artefactos , Simulación por Computador , Humanos , Extremidad Inferior/irrigación sanguínea , Microvasos/diagnóstico por imagen , Movimiento/fisiología , Procesamiento de Señales Asistido por Computador
13.
Artículo en Inglés | MEDLINE | ID: mdl-34093969

RESUMEN

Motion during image acquisition can cause image degradation in all medical imaging modalities. This is particularly relevant in 2-D ultrasound imaging, since out-of-plane motion can only be compensated for movements smaller than elevational beamwidth of the transducer. Localization based super-resolution imaging creates even a more challenging motion correction task due to the requirement of a high number of acquisitions to form a single super-resolved frame. In this study, an extension of two-stage motion correction method is proposed for 3-D motion correction. Motion estimation was performed on high volumetric rate ultrasound acquisitions with a handheld probe. The capability of the proposed method was demonstrated with a 3-D microvascular flow simulation to compensate for handheld probe motion. Results showed that two-stage motion correction method reduced the average localization error from 136 to 18 µm.

14.
Artículo en Inglés | MEDLINE | ID: mdl-28829309

RESUMEN

Acoustic super-resolution imaging has allowed the visualization of microvascular structure and flow beyond the diffraction limit using standard clinical ultrasound systems through the localization of many spatially isolated microbubble signals. The determination of each microbubble position is typically performed by calculating the centroid, finding a local maximum, or finding the peak of a 2-D Gaussian function fit to the signal. However, the backscattered signal from a microbubble depends not only on diffraction characteristics of the waveform, but also on the microbubble behavior in the acoustic field. Here, we propose a new axial localization method by identifying the onset of the backscattered signal. We compare the accuracy of localization methods using in vitro experiments performed at 7-cm depth and 2.3-MHz center frequency. We corroborate these findings with simulation results based on the Marmottant model. We show experimentally and in simulations that detecting the onset of the returning signal provides considerably increased accuracy for super-resolution. Resulting experimental cross-sectional profiles in super-resolution images demonstrate at least 5.8 times improvement in contrast ratio and more than 1.8 times reduction in spatial spread (provided by 90% of the localizations) for the onset method over centroiding, peak detection, and 2-D Gaussian fitting methods. Simulations estimate that these latter methods could create errors in relative bubble positions as high as at these experimental settings, while the onset method reduced the interquartile range of these errors by a factor of over 2.2. Detecting the signal onset is, therefore, expected to considerably improve the accuracy of super-resolution.

15.
Artículo en Inglés | MEDLINE | ID: mdl-28113930

RESUMEN

Control over the direction of wave propagation allows an engineer to spatially locate defects. When imaging with longitudinal waves, time delays can be applied to each element of a phased array transducer to steer a beam. Because of the highly dispersive nature of guided waves (GWs), this beamsteering approach is suboptimal. More appropriate time delays can be chosen to direct a GW if the dispersion relation of the material is known. Existing techniques, however, need a priori knowledge of material thickness and acoustic velocity, which change as a function of temperature and strain. The scheme presented here does not require prior knowledge of the dispersion relation or properties of the specimen to direct a GW. Initially, a GW is generated using a single element of an array transducer. The acquired waveforms from the remaining elements are then processed and retransmitted, constructively interfering with the wave as it travels across the spatial influence of the transducer. The scheme intrinsically compensates for the dispersion of the waves, and thus can adapt to changes in material thickness and acoustic velocity. The proposed technique is demonstrated in simulation and experimentally. Dispersion curves from either side of the array are acquired to demonstrate the scheme's ability to direct a GW in an aluminum plate. The results show that unidirectional enhancement is possible without a priori knowledge of the specimen using an arbitrary pitch array transducer. The experimental results show a 34-dB enhancement in one direction compared with the other.


Asunto(s)
Modelos Teóricos , Transductores , Ondas Ultrasónicas , Ultrasonido/instrumentación , Simulación por Computador , Aceites/química , Ultrasonografía , Agua/química
16.
Ultrasound Med Biol ; 43(1): 346-356, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27789045

RESUMEN

Therapeutic microbubbles could make an important contribution to the diagnosis and treatment of cancer. Acoustic characterisation was performed on microfluidic generated microbubble populations that either were bare or had liposomes attached. Through the use of broadband attenuation techniques (3-8 MHz), the shell stiffness was measured to be 0.72 ± 0.01 and 0.78 ± 0.05 N/m and shell friction was 0.37 ± 0.05 and 0.74 ± 0.05 × 10-6 kg/s for bare and liposome-loaded microbubbles, respectively. Acoustic scatter revealed that liposome-loaded microbubbles had a lower subharmonic threshold, occurring from a peak negative pressure of 50 kPa, compared with 200 kPa for equivalent bare microbubbles. It was found that liposome loading had a negligible effect on the destruction threshold for this microbubble type, because at a mechanical index >0.4 (570 kPa), 80% of both populations were destroyed.


Asunto(s)
Medios de Contraste , Liposomas , Microburbujas , Ondas Ultrasónicas
17.
Artículo en Inglés | MEDLINE | ID: mdl-27824571

RESUMEN

The response of a resonant chain of spheres to changes in holder material and precompression is studied at ultrasonic frequencies. The system is found to be very sensitive to these parameters, with the creation of impulsive waveforms from a narrow bandwidth input seen only for certain chain lengths and holder materials. In addition, careful experiments were performed using known amounts of precompression force, using a calibrated stylus arrangement. At negligible precompression levels, impulses were generated within the chain, which were then suppressed by increased precompression. This was accompanied by large changes in the propagation velocity as the system gradually changes from being strongly nonlinear to being more linear. Simulations using a discrete model for the motion of each sphere agree well with the experimental data.

18.
Artículo en Inglés | MEDLINE | ID: mdl-25389159

RESUMEN

Superharmonic imaging improves the spatial resolution by using the higher order harmonics generated in tissue. The superharmonic component is formed by combining the third, fourth, and fifth harmonics, which have low energy content and therefore poor SNR. This study uses coded excitation to increase the excitation energy. The SNR improvement is achieved on the receiver side by performing pulse compression with harmonic matched filters. The use of coded signals also introduces new filtering capabilities that are not possible with pulsed excitation. This is especially important when using wideband signals. For narrowband signals, the spectral boundaries of the harmonics are clearly separated and thus easy to filter; however, the available imaging bandwidth is underused. Wideband excitation is preferable for harmonic imaging applications to preserve axial resolution, but it generates spectrally overlapping harmonics that are not possible to filter in time and frequency domains. After pulse compression, this overlap increases the range side lobes, which appear as imaging artifacts and reduce the Bmode image quality. In this study, the isolation of higher order harmonics was achieved in another domain by using the fan chirp transform (FChT). To show the effect of excitation bandwidth in superharmonic imaging, measurements were performed by using linear frequency modulated chirp excitation with varying bandwidths of 10% to 50%. Superharmonic imaging was performed on a wire phantom using a wideband chirp excitation. Results were presented with and without applying the FChT filtering technique by comparing the spatial resolution and side lobe levels. Wideband excitation signals achieved a better resolution as expected, however range side lobes as high as -23 dB were observed for the superharmonic component of chirp excitation with 50% fractional bandwidth. The proposed filtering technique achieved >50 dB range side lobe suppression and improved the image quality without affecting the axial resolution.

19.
Artículo en Inglés | MEDLINE | ID: mdl-24297017

RESUMEN

The therapeutic use of microbubbles for targeted drug or gene delivery is a highly active area of research. Phospholipid- encapsulated microbubbles typically have a polydisperse size distribution over the 1 to 10 µm range and can be functionalized for molecular targeting and loaded with drugcarrying liposomes. Sonoporation through the generation of shear stress on the cell membrane by microbubble oscillations is one mechanism that results in pore formation in the cell membrane and can improve drug delivery. A microbubble oscillating at its resonant frequency would generate maximum shear stress on a membrane. However, because of the polydisperse nature of phospholipid microbubbles, a range of resonant frequencies would exist in a single population. In this study, the use of linear chirp excitations was compared with equivalent duration and acoustic pressure tone excitations when measuring the sonoporation efficiency of targeted microbubbles on human colorectal cancer cells. A 3 to 7 MHz chirp had the greatest sonoporation efficiency of 26.9 ± 5.6%, compared with 16.4 ± 1.1% for the 1.32 to 3.08 MHz chirp. The equivalent 2.2- and 5-MHz tone excitations have efficiencies of 12.8 ± 2.1% and 15.6 ± 1.1%, respectively, which were all above the efficiency of 4.1 ± 3.1% from the control exposure.


Asunto(s)
Sistemas de Liberación de Medicamentos , Microburbujas , Sonicación/métodos , Colorantes Fluorescentes/química , Células HCT116 , Humanos , Tamaño de la Partícula
20.
Artículo en Inglés | MEDLINE | ID: mdl-24297019

RESUMEN

Subharmonic generation from ultrasound contrast agents depends on the spectral and temporal properties of the excitation signal. The subharmonic response can be improved by using wideband and long-duration signals. However, for sinusoidal tone-burst excitation, the effective bandwidth of the signal is inversely proportional to the signal duration. Linear frequency-modulated (LFM) and nonlinear frequency-modulated (NLFM) chirp excitations allow independent control over the signal bandwidth and duration; therefore, in this study LFM and NLFM signals were used for the insonation of microbubble populations. The amplitude modulation of the excitation waveform was achieved by applying different window functions. A customized window was designed for the NLFM chirp excitation by focusing on reducing the spectral leakage at the subharmonic frequency and increasing the subharmonic generation from microbubbles. Subharmonic scattering from a microbubble population was measured for various excitation signals and window functions. At a peak negative pressure of 600 kPa, the generated subharmonic energy by ultrasound contrast agents was 15.4 dB more for NLFM chirp excitation with 40% fractional bandwidth when compared with tone-burst excitation. For this reason, the NLFM chirp with a customized window was used as an excitation signal to perform subharmonic imaging in an ultrasound flow phantom. Results showed that the NLFM waveform with a customized window improved the subharmonic contrast by 4.35 ± 0.42 dB on average over a Hann-windowed LFM excitation.


Asunto(s)
Procesamiento de Señales Asistido por Computador , Ultrasonografía/métodos , Medios de Contraste/química , Microburbujas , Fantasmas de Imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...