Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 14 de 14
1.
Int J Radiat Oncol Biol Phys ; 117(4): 857-868, 2023 Nov 15.
Article En | MEDLINE | ID: mdl-37244626

PURPOSE: The IMRT-MC2 trial was conducted to demonstrate the noninferiority of conventionally fractionated intensity modulated radiation therapy with a simultaneous integrated boost to 3-dimensional conformal radiation therapy with a sequential boost for adjuvant breast radiation therapy. METHODS AND MATERIALS: A total of 502 patients were randomized between 2011 and 2015 for the prospective, multicenter, phase III trial (NCT01322854). Five-year results of late toxicity (late effects normal tissue task force-subjective, objective, management, and analytical), overall survival, disease-free survival, distant disease-free survival, cosmesis (Harvard scale), and local control (noninferiority margin at hazard ratio [HR] of 3.5) were analyzed after a median follow-up of 62 months. RESULTS: The 5-year local control rate for the intensity modulated radiation therapy with simultaneous integrated boost arm was non-inferior to the control arm (98.7% vs 98.3%, respectively; HR, 0.582; 95% CI, 0.119-2.375; P = .4595). Furthermore, there was no significant difference in overall survival (97.1% vs 98.3%, respectively; HR, 1.235; 95% CI, 0.472-3.413; P = .6697), disease-free survival (95.8% vs 96.1%, respectively; HR, 1.130; 95% CI, 0.487-2.679; P = .7758), and distant disease-free survival (97.0% vs 97.8%, respectively; HR, 1.667; 95% CI, 0.575-5.434; P = .3601). After 5 years, late toxicity evaluation and cosmetic assessment further showed no significant differences between treatment arms. CONCLUSIONS: The 5-year results of the IMRT-MC2 trial provide strong evidence that the application of conventionally fractionated simultaneous integrated boost irradiation for patients with breast cancer is both safe and effective, with noninferior local control compared with 3-dimensional conformal radiation therapy with sequential boost.

2.
Front Oncol ; 12: 677181, 2022.
Article En | MEDLINE | ID: mdl-35992835

Background: Radiotherapy plays an important role in the management of skull base meningioma. The aim of the study was to investigate patient-reported outcomes. Methods: A questionnaire of 20 items was sent to 192 patients with meningioma of the skull base who have been treated with proton therapy at a single institution. The survey included dichotomous, scaling, and open questions about symptoms, social distancing, rehabilitation, work, reintegration, limitations in recreational activities, as well as daily life activities and correlating diagnoses. Additionally, symptoms were reported retrospectively by the patients at different time points. In total, 128 patients (66.7%) responded. The median age at the time of RT was 55 years (range: 28-91); the majority were female (79%). The median time between the treatment of meningioma and the survey was 38.5 months (range: 7-100). Results: The most common initial symptoms were visual impairment (N=54, 42.2%), dizziness (N=38, 29.7%), and double vision (N=32, 25%). The most limiting symptom in daily life at the time of the survey was fatigue (N=31, 24.2%); a significant proportion of patients reported depression as associated with diagnosis (31.3%). Only 53% of patients reported occupational activity before treatment, this number did not increase with time. Only N= 40 (31.3%) and N=35 (27.3%) patients reported no limitations in daily household chores or recreational activities by the disease and treatment. The course of cognitive function after treatment showed a temporary deterioration with subsequent improvement. Except for the improvement in emotional functioning, most domains showed a temporary deterioration during radiotherapy, still, the values reached after 6 months differed weekly or moderately from the initial values. Conclusion: Besides neurological deficits, patients with skull base meningioma experience a variety of unspecific symptoms, which can be most limiting in daily life. Even successful treatment does not necessarily translate into the alleviation of those symptoms. A greater focus on the characterization of those symptom complexes is necessary. Greater focus on functional structures such as the hippocampus might improve the results. Due to the retrospective character, this study is hypothesis-generating.

3.
Acta Neuropathol ; 144(1): 129-142, 2022 07.
Article En | MEDLINE | ID: mdl-35660939

Glioblastoma (GBM) derived from the "stem cell" rich subventricular zone (SVZ) may constitute a therapy-refractory subgroup of tumors associated with poor prognosis. Risk stratification for these cases is necessary but is curtailed by error prone imaging-based evaluation. Therefore, we aimed to establish a robust DNA methylome-based classification of SVZ GBM and subsequently decipher underlying molecular characteristics. MRI assessment of SVZ association was performed in a retrospective training set of IDH-wildtype GBM patients (n = 54) uniformly treated with postoperative chemoradiotherapy. DNA isolated from FFPE samples was subject to methylome and copy number variation (CNV) analysis using Illumina Platform and cnAnalysis450k package. Deep next-generation sequencing (NGS) of a panel of 130 GBM-related genes was conducted (Agilent SureSelect/Illumina). Methylome, transcriptome, CNV, MRI, and mutational profiles of SVZ GBM were further evaluated in a confirmatory cohort of 132 patients (TCGA/TCIA). A 15 CpG SVZ methylation signature (SVZM) was discovered based on clustering and random forest analysis. One third of CpG in the SVZM were associated with MAB21L2/LRBA. There was a 14.8% (n = 8) discordance between SVZM vs. MRI classification. Re-analysis of these patients favored SVZM classification with a hazard ratio (HR) for OS of 2.48 [95% CI 1.35-4.58], p = 0.004 vs. 1.83 [1.0-3.35], p = 0.049 for MRI classification. In the validation cohort, consensus MRI based assignment was achieved in 62% of patients with an intraclass correlation (ICC) of 0.51 and non-significant HR for OS (2.03 [0.81-5.09], p = 0.133). In contrast, SVZM identified two prognostically distinct subgroups (HR 3.08 [1.24-7.66], p = 0.016). CNV alterations revealed loss of chromosome 10 in SVZM- and gains on chromosome 19 in SVZM- tumors. SVZM- tumors were also enriched for differentially mutated genes (p < 0.001). In summary, SVZM classification provides a novel means for stratifying GBM patients with poor prognosis and deciphering molecular mechanisms governing aggressive tumor phenotypes.


Brain Neoplasms , Glioblastoma , Adaptor Proteins, Signal Transducing/genetics , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Brain Neoplasms/pathology , DNA Copy Number Variations , Epigenome , Eye Proteins/genetics , Glioblastoma/diagnostic imaging , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Intracellular Signaling Peptides and Proteins/genetics , Lateral Ventricles/diagnostic imaging , Lateral Ventricles/pathology , Prognosis , Retrospective Studies
4.
Cancers (Basel) ; 14(12)2022 Jun 18.
Article En | MEDLINE | ID: mdl-35740675

The present analysis compares the esthetics assessment by the BCCT.core software in relation to patients' and physicians' ratings, based on the IMRT-MC2 trial. Within this trial, breast cancer patients received breast-conserving surgery (BCS) and adjuvant radiotherapy. At the baseline, 6 weeks, and 2 years after radiotherapy, photos of the breasts were assessed by the software and patients' and physicians' assessments were performed. Agreement rates of the assessments and their correlation with breast asymmetry indices were evaluated. The assessments of the software and the physicians were significantly correlated with asymmetry indices. Before and 6 weeks after radiotherapy, the patients' self-assessment was only correlated with the lower breast contour (LBC) and upward nipple retraction (UNR), while after 2 years, there was also a correlation with other indices. Only a slight agreement between the BCCT.core software and the physicians' or patients' assessment was seen, while a moderate and substantial agreement was detected between the physicians' and the patients' assessment after 6 weeks and 2 years, respectively. The BCCT.core software is a reliable tool to measure asymmetries, but may not sufficiently evaluate the esthetic outcome as perceived by patients. It may be more appropriate for a long-term follow-up, when symmetry appears to increase in importance.

5.
Strahlenther Onkol ; 198(3): 282-290, 2022 Mar.
Article En | MEDLINE | ID: mdl-34351451

PURPOSE: In Germany, Austria, and Switzerland, pretreatment radiotherapy quality control (RT-QC) for tumor bed boost (TB) in non-metastatic medulloblastoma (MB) was not mandatory but was recommended for patients enrolled in the SIOP PNET5 MB trial between 2014 and 2018. This individual case review (ICR) analysis aimed to evaluate types of deviations in the initial plan proposals and develop uniform review criteria for TB boost. PATIENTS AND METHODS: A total of 78 patients were registered in this trial, of whom a subgroup of 65 patients were available for evaluation of the TB treatment plans. Dose uniformity was evaluated according to the definitions of the protocol. Additional RT-QC criteria for standardized review of target contours were elaborated and data evaluated accordingly. RESULTS: Of 65 initial TB plan proposals, 27 (41.5%) revealed deviations of target volume delineation. Deviations according to the dose uniformity criteria were present in 14 (21.5%) TB plans. In 25 (38.5%) cases a modification of the RT plan was recommended. Rejection of the TB plans was rather related to unacceptable target volume delineation than to insufficient dose uniformity. CONCLUSION: In this analysis of pretreatment RT-QC, protocol deviations were present in a high proportion of initial TB plan proposals. These findings emphasize the importance of pretreatment RT-QC in clinical trials for MB. Based on these data, a proposal for RT-QC criteria for tumor bed boost in non-metastatic MB was developed.


Cerebellar Neoplasms , Medulloblastoma , Radiation Oncology , Cerebellar Neoplasms/radiotherapy , Germany , Humans , Medulloblastoma/radiotherapy , Quality Control , Radiotherapy Planning, Computer-Assisted
6.
Radiother Oncol ; 163: 165-176, 2021 10.
Article En | MEDLINE | ID: mdl-34480960

BACKGROUND: We recently published 2-year results of the prospective, randomized IMRT-MC2 trial, showing non-inferior local control and cosmesis in breast cancer patients after conventionally fractionated intensity-modulated radiotherapy with simultaneously integrated boost (IMRT-SIB), compared to 3D-conformal radiotherapy with sequential boost (3D-CRT-seqB). Here, we report on 2-year quality of life results. PATIENTS AND METHODS: 502 patients were enrolled and randomized to IMRT-SIB (50.4 Gy in 1.8 Gy fractions with a 64.4 Gy SIB to the tumor bed) or to 3D-CRT-seqB (50.4 Gy in 1.8 Gy fractions, followed by a sequential boost of 16 Gy in 2 Gy fractions). For quality of life (QoL) assessment, patients completed the QLQ-C30 and QLQ-BR23 questionnaires at baseline, 6 weeks and 2 years after radiotherapy. RESULTS: Significant differences between treatment arms were seen 6 weeks after radiotherapy for pain (22.3 points for IMRT vs. 27.0 points for 3D-CRT-seqB; p = 0.033) and arm symptoms (18.1 points for IMRT vs. 23.6 points for 3D-CRT-seqB; p = 0.013), both favoring IMRT-SIB. Compared to baseline values, both arms showed significant improvement in global score (IMRT: p = 0.009; 3D-CRT: p = 0.001) after 2 years, with slight deterioration on the role (IMRT: p = 0.008; 3-D-CRT: p = 0.001) and social functioning (IMRT: p = 0.013, 3D-CRT: p = 0.001) as well as the future perspectives scale (IMRT: p = 0.003; 3D-CRT: p = 0.0034). CONCLUSION: This is the first randomized phase III trial demonstrating that IMRT-SIB was associated with slightly superior QoL compared to 3-D-CRT-seqB. These findings further support the clinical implementation of SIB in adjuvant breast cancer treatment.


Breast Neoplasms , Radiotherapy, Conformal , Radiotherapy, Intensity-Modulated , Breast Neoplasms/radiotherapy , Female , Humans , Prospective Studies , Quality of Life , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
7.
Strahlenther Onkol ; 197(8): 674-682, 2021 Aug.
Article En | MEDLINE | ID: mdl-33226469

PURPOSE: Several studies have demonstrated the negative impact of radiotherapy protocol deviations on tumor control in medulloblastoma. In the SIOP PNET5 MB trial, a pretreatment radiotherapy quality control (RT-QC) program was introduced. A first analysis for patients enrolled in Germany, Switzerland and Austria with focus on types of deviations in the initial plan proposals and review criteria for modern radiation technologies was performed. METHODS AND PATIENTS: Sixty-nine craniospinal irradiation (CSI) plans were available for detailed analyses. RT-QC was performed according to protocol definitions on dose uniformity. Because of the lack of definitions for high-precision 3D conformal radiotherapy within the protocol, additional criteria for RT-QC on delineation and coverage of clinical target volume (CTV) and planning target volume (PTV) were defined and evaluated. RESULTS: Target volume (CTV/PTV) deviations occurred in 49.3% of initial CSI plan proposals (33.3% minor, 15.9% major). Dose uniformity deviations were less frequent (43.5%). Modification of the RT plan was recommended in 43.5% of CSI plans. Unacceptable RT plans were predominantly related to incorrect target delineation rather than dose uniformity. Unacceptable plans were negatively correlated to the number of enrolled patients per institution with a cutoff of 5 patients (p = 0.001). CONCLUSION: This prospective pretreatment individual case review study revealed a high rate of deviations and emphasizes the strong need of pretreatment RT-QC in clinical trials for medulloblastoma. Furthermore, the experiences point out the necessity of new RT-QC criteria for high-precision CSI techniques.


Cerebellar Neoplasms/radiotherapy , Craniospinal Irradiation/methods , Medulloblastoma/radiotherapy , Adolescent , Adult , Child , Child, Preschool , Cohort Studies , Female , Germany , Humans , Male , Prospective Studies , Quality Control , Radiation Oncology , Young Adult
8.
Br J Radiol ; 93(1114): 20200183, 2020 Oct 01.
Article En | MEDLINE | ID: mdl-32795176

The first hospital-based treatment facilities for particle therapy started operation about thirty years ago. Since then, the clinical experience with protons and carbon ions has grown continuously and more than 200,000 patients have been treated to date. The promising clinical results led to a rapidly increasing number of treatment facilities and many new facilities are planned or under construction all over the world. An inverted depth-dose profile combined with potential radiobiological advantages make charged particles a precious tool for the treatment of tumours that are particularly radioresistant or located nearby sensitive structures. A rising number of trials have already confirmed the benefits of particle therapy in selected clinical situations and further improvements in beam delivery, image guidance and treatment planning are expected. This review summarises some physical and biological characteristics of accelerated charged particles and gives some examples of their clinical application. Furthermore, challenges and future perspectives of particle therapy will be discussed.


Precision Medicine/trends , Radiation Oncology/trends , Radiotherapy, High-Energy/trends , Humans , Particle Accelerators , Proton Therapy , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
9.
Recent Results Cancer Res ; 216: 865-879, 2020.
Article En | MEDLINE | ID: mdl-32594410

During the last decades, radiation oncology has been subject to a number of technological innovations. Particle therapy has evolved in parallel to the modern high-precision photon radiotherapy techniques and offers a superior dose distribution with decreased integral dose to healthy tissues. With advancing precision of treatment, the necessity for accurate and confident target volume delineation is rising. When morphological imaging reaches its limitations, molecular imaging can provide valuable information.


Molecular Imaging , Neoplasms/diagnostic imaging , Neoplasms/radiotherapy , Radiation Oncology/trends , Humans
10.
Br J Radiol ; 93(1107): 20190516, 2020 Mar.
Article En | MEDLINE | ID: mdl-31647306

Re-irradiation can offer a potentially curative solution in case of progression after initial therapy; however, a second course of radiotherapy can be associated with an increased risk of severe side-effects. Particle therapy with protons and especially carbon ions spares surrounding tissue better than most photon techniques, thus it is of high potential for re-irradiation. Irradiation of tumors of the brain, head and neck and skull base involves several delicate risk organs, e.g. optic system, brainstem, salivary gland or swallowing muscles. Adequate local control rates with tolerable side-effects have been described for several tumors of these locations as meningioma, adenoid cystic carcinoma, chordoma or chondrosarcoma and head and neck tumors. High life time doses nonetheless lead to a different scope of side-effects, e.g. an enhanced rate of carotid blow outs has been reported. This review summarizes the current data on particle irradiation of the aforementioned locations and malignancies.


Brain Neoplasms/radiotherapy , Head and Neck Neoplasms/radiotherapy , Heavy Ion Radiotherapy/methods , Proton Therapy/methods , Re-Irradiation/methods , Skull Base Neoplasms/radiotherapy , Carcinoma, Adenoid Cystic/radiotherapy , Carotid Arteries/radiation effects , Carotid Artery Injuries/etiology , Central Nervous System/pathology , Central Nervous System/radiation effects , Chondrosarcoma/radiotherapy , Chordoma/radiotherapy , Ependymoma/radiotherapy , Glioma/radiotherapy , Humans , Meningeal Neoplasms/radiotherapy , Meningioma/radiotherapy , Necrosis , Organs at Risk , Sarcoma/radiotherapy
11.
Front Oncol ; 9: 798, 2019.
Article En | MEDLINE | ID: mdl-31508363

Background: Ionizing radiation was shown to be able to influence the function of cardiac implantable electronic devices (CIED's) leading to malfunctions with potentially severe consequences. Those effects presumably correlate with beam energy and neutron production. Thus, particle facilities are commonly cautious to treat patients with CIED's with particles, but substantial evidence is lacking. Methods and Materials: In total 31 patients were investigated, who have been treated at the Heidelberg Ion-Beam Therapy Center (HIT) from September 2012 to February 2019 with protons and carbon ions in active-scanning technique. All CIED's were checked after every single irradiation by the department of cardiology. The minimum distance between the CIED and the planning target volume (PTV), the 10% isodose and the single beam in Beam's Eye View (BEV) was analyzed for 12 patients. Results: In total, 31 patients received 32 courses of radiotherapy (RT). Twenty-two received treatment with carbon ion beam and ten with proton beam. The cumulative number of fractions was 582, the cumulative number of documented controls after RT was 504 (87%). Three patients had an implantable cardioverter-defibrillator (ICD) and 28 patients had a pacemaker at the time of treatment. Seven patients had a heart rate of ≤30/min. The majority of patients (69%) were treated for tumors of the head and neck. The median minimum distance between CIED and PTV, 10% isodose and the single beam on BEV was 13.4, 11.6, and 8.3 cm, respectively. There were no registered events associated with the treatment in this evaluation. Conclusion: Treatment of CIED-patients with protons and carbon ions applied with active raster scanning technique was safe without any incidents in our single center experience. Monitoring after almost every fraction provided systematic and extensive data. Further investigations are necessary in order to form reliable guidelines, which should consider different modes of beam application, as active scanning supposedly provides a greater level of safety from malfunctions for patients with CIED undergoing particle irradiation.

12.
Radiother Oncol ; 125(2): 266-272, 2017 11.
Article En | MEDLINE | ID: mdl-29050959

PURPOSE: To retrospectively assess the feasibility and safety of a sequential proton boost following conventional chemoradiation in high-grade glioma (HGG). METHOD AND MATERIALS: Sixty-six consecutive patients with HGG were treated with 50.0 Gy photons (50.0-50.4 Gy) in 2.0 Gy (1.8-2.0 Gy) fractions, followed by a proton boost with 10 Gy equivalent (Gy(RBE)) in 2.0 Gy(RBE) fractions. Patients were matched one to one with 66 patients with HGG undergoing conventional radiation therapy (RT) with 60.0 Gy photons (59.4-60.0 Gy) in 2.0 Gy fractions (1.8-2.0 Gy). Matching criteria were age, WHO grade, Karnofsky's performance status, PTV size, temozolomide therapy (each p > 0.1). The study assessed progression-free survival (PFS), overall survival (OS), acute treatment-related toxicity (CTCAE v.4.03) and pseudoprogression (RANO criteria). RESULTS: Median PFS and OS were similar in both treatment groups (bimodality RT, PFS: 8.8 months [2-32 months], OS 19.1 months [4-41 months]; photon-only RT, PFS: 7.2 months [2-39 months], 20.9 months [3-53 months]; p = 0.430 and p = 0.125). The median PTV of the proton boost was significantly smaller than the photon plan PTVs (each p < 0.001). Acute toxicity was mild. Toxicity ≥grade 2 was observed in 6 patients (9%) receiving bimodality RT and 9 patients (14%) receiving photon-only RT. Two types of severe adverse events (CTCAE grade 3) occurred solely in the photon-only group: severe increase in intracranial pressure (5%); and generalized seizures (3%). Pseudoprogression was rare, occurring on average 6 weeks after radiotherapy, and was balanced in both treatment groups (n = 4 each; 8%). CONCLUSION: Delivering a proton boost to significantly smaller target volumes when compared to photon-only plans, yielded comparable progression and survival rates at lower CTCAE grade 3 acute toxicity rates. Pseudoprogression occurred rarely and evenly distributed in both treatment groups. Thus, bimodality RT was at least equivalent regarding outcome and potentially superior with respect to toxicity in patients with HGG. SUMMARY: Treating patients with HGG with 50.0 Gy photons in 2.0 Gy fractions, followed by a proton boost with 10 Gy(RBE) in 2.0 Gy(RBE) fractions, is safe and feasible. Severe radiation-induced acute toxicity and pseudoprogression were rare in both treatment groups. Therefore, in this clinical setting, combined proton radiotherapy might be beneficial in terms of further risk reduction for treatment-related side effects. Interestingly, treatment volume reduction using a proton boost led to comparable survival and progression rates with decreased severe treatment-related toxicity compared to conventional photon radiotherapy.


Brain Neoplasms/radiotherapy , Glioma/radiotherapy , Proton Therapy/methods , Adult , Aged , Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/drug therapy , Brain Neoplasms/surgery , Chemoradiotherapy, Adjuvant , Dacarbazine/analogs & derivatives , Dacarbazine/therapeutic use , Disease Progression , Disease-Free Survival , Glioma/drug therapy , Glioma/surgery , Humans , Male , Middle Aged , Neoplasm Grading , Proton Therapy/adverse effects , Retrospective Studies , Temozolomide , Young Adult
13.
Stem Cells Int ; 2016: 8793462, 2016.
Article En | MEDLINE | ID: mdl-27429623

Background and Purpose. The reasons for the inevitable glioblastoma recurrence are yet understood. However, recent data suggest that tumor cancer stem cells (CSCs) in the stem-cell niches, with self-renewing capacities, might be responsible for tumor initiation, propagation, and recurrence. We aimed to analyze the effect of higher radiation doses to the stem-cell niches on progression-free survival (PFS) and overall survival (OS) in glioblastoma patients. Materials and Methods. Sixty-five patients with primary glioblastoma treated with radiation therapy were included in this retrospective analysis. The SVZ and DG were segmented on treatment planning magnetic resonance imaging, and the dose distributions to the structures were calculated. The relationship of dosimetry data and survival was evaluated using the Cox regression analysis. Results. Conventionally fractionated patients (n = 54) who received higher doses (D mean ≥ 40 Gy) to the IL SVZ showed improved PFS (8.5 versus 5.2 months; p = 0.013). Furthermore, higher doses (D mean ≥ 30 Gy) to the CL SVZ were associated with increased PFS (10.1 versus 6.9 months; p = 0.025). Conclusion. Moderate higher IL SVZ doses (≥40 Gy) and CL SVZ doses (≥30 Gy) are associated with improved PFS. Higher doses to the DG, the second stem-cell niche, did not influence the survival. Targeting the potential cancer stem cells in the SVZ might be a promising treatment approach for glioblastoma and should be addressed in a prospective randomized trial.

14.
J Neurooncol ; 128(2): 341-8, 2016 06.
Article En | MEDLINE | ID: mdl-27025857

Clinical guidelines for gliosarcoma (GSM) are poorly defined and GSM patients are usually treated in accordance with existing guidelines for glioblastoma (GBM), with maximal surgical resection followed by chemoradiation with temozolomide (TMZ). However, it is not clear yet if GSM patients profit from TMZ therapy and if O6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation is crucial. We retrospectively evaluated 37 patients with histologically proven, primary GSM who had received radiation therapy since the temozolomide era (post-2005). Twenty-five patients (67.6 %) received combined chemoradiation with temozolomide, and 12 cases (32.4 %) received radiation therapy alone. Molecular markers were determined retrospectively. Survival and correlations were calculated using log-rank, univariate, and multivariate Cox proportional hazards-ratio analyses. All cases were isocitrate dehydrogenase 1 (IDH1) wildtype, MGMT promoter methylation could be observed in 33.3 % of the assessable cases (10/30) and TERT promoter mutation was seen in a high frequency of 86.7 % (26/30). The influence of TMZ therapy on overall survival (OS) was significantly improved compared with cases in which radiation therapy alone was performed (13.9 vs. 9.9 months; p = 0.045), independently of MGMT promoter methylation. The positive effect of TMZ on OS was confirmed in this study's multivariate analyses (p = 0.04), after adjusting our results for potential confounders. In conclusion, this study demonstrates that concomitant TMZ together with radiation therapy increases GSM-patient survival independent of MGMT promoter methylation. Thus, GSM can be treated in accordance to GBM guidelines. MGMT promoter methylation was infrequent and TERT promoter mutation common without influencing the survival rates. The mechanisms of TMZ effects in GSM are still not fully understood and merit further clinical and molecular-genetic and -biological evaluation.


Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/therapy , Chemoradiotherapy , Dacarbazine/analogs & derivatives , Gliosarcoma/therapy , Adult , Aged , Aged, 80 and over , Brain Neoplasms/genetics , DNA Methylation , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Dacarbazine/therapeutic use , Female , Gliosarcoma/genetics , Humans , Isocitrate Dehydrogenase/genetics , Male , Microsurgery , Middle Aged , Multivariate Analysis , Neurosurgical Procedures , Proportional Hazards Models , Retrospective Studies , Telomerase/genetics , Temozolomide , Tumor Suppressor Proteins/genetics
...