Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
PLoS One ; 19(5): e0303325, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38748668

RESUMEN

Since the 19th century, underwater explosions have posed a significant threat to service members. While there have been attempts to establish injury criteria for the most vulnerable organs, namely the lungs, existing criteria are highly variable due to insufficient human data and the corresponding inability to understand the underlying injury mechanisms. This study presents an experimental characterization of isolated human lung dynamics during simulated exposure to underwater shock waves. We found that the large acoustic impedance at the surface of the lung severely attenuated transmission of the shock wave into the lungs. However, the shock wave initiated large bulk pressure-volume cycles that are distinct from the response of the solid organs under similar loading. These pressure-volume cycles are due to compression of the contained gas, which we modeled with the Rayleigh-Plesset equation. The extent of these lung dynamics was dependent on physical confinement, which in real underwater blast conditions is influenced by factors such as rib cage properties and donned equipment. Findings demonstrate a potential causal mechanism for implosion injuries, which has significant implications for the understanding of primary blast lung injury due to underwater blast exposures.


Asunto(s)
Traumatismos por Explosión , Pulmón , Humanos , Pulmón/fisiología , Traumatismos por Explosión/etiología , Explosiones , Lesión Pulmonar/etiología , Masculino , Presión , Ondas de Choque de Alta Energía/efectos adversos
2.
J Neurosci ; 44(11)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38316559

RESUMEN

Transcranial focused ultrasound stimulation (tFUS) is a noninvasive neuromodulation technique, which can penetrate deeper and modulate neural activity with a greater spatial resolution (on the order of millimeters) than currently available noninvasive brain stimulation methods, such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). While there are several studies demonstrating the ability of tFUS to modulate neuronal activity, it is unclear whether it can be used for producing long-term plasticity as needed to modify circuit function, especially in adult brain circuits with limited plasticity such as the thalamocortical synapses. Here we demonstrate that transcranial low-intensity focused ultrasound (LIFU) stimulation of the visual thalamus (dorsal lateral geniculate nucleus, dLGN), a deep brain structure, leads to NMDA receptor (NMDAR)-dependent long-term depression of its synaptic transmission onto layer 4 neurons in the primary visual cortex (V1) of adult mice of both sexes. This change is not accompanied by large increases in neuronal activity, as visualized using the cFos Targeted Recombination in Active Populations (cFosTRAP2) mouse line, or activation of microglia, which was assessed with IBA-1 staining. Using a model (SONIC) based on the neuronal intramembrane cavitation excitation (NICE) theory of ultrasound neuromodulation, we find that the predicted activity pattern of dLGN neurons upon sonication is state-dependent with a range of activity that falls within the parameter space conducive for inducing long-term synaptic depression. Our results suggest that noninvasive transcranial LIFU stimulation has a potential for recovering long-term plasticity of thalamocortical synapses in the postcritical period adult brain.


Asunto(s)
Estimulación Transcraneal de Corriente Directa , Corteza Visual , Masculino , Femenino , Ratones , Animales , Tálamo/fisiología , Plasticidad Neuronal/fisiología , Corteza Visual/fisiología , Sinapsis
3.
Data Brief ; 31: 105876, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32642510

RESUMEN

A low-cost quantitative structured office measurement of movements in the extremities of people with Parkinson's disease [1,2] was performed on people with Parkinson's disease, multiple system atrophy, and age-matched healthy volunteers. Participants underwent twelve videotaped procedures rated by a trained examiner while connected to four accelerometers [1,2] generating a trace of the three location dimensions expressed as spreadsheets [3,4]. The signals of the five repetitive motion items [1,2] underwent processing to fast Fourier [5] and continuous wavelet transforms [6]. The dataset [7] includes the coding form with scores of the live ratings [1,2], the raw files [3], the converted spreadsheets [4], and the fast Fourier [5] and continuous wavelet transforms [6]. All files are unfiltered. The data also provide findings suitable to compare and contrast with data obtained by investigators applying the same procedure to other populations. Since this is an inexpensive procedure to quantitatively measure motions in Parkinson's disease and other movement disorders, this will be a valuable resource to colleagues, particularly in underdeveloped regions with limited budgets. The dataset will serve as a template for other investigations to develop novel techniques to facilitate the diagnosis, monitoring, and treatment of Parkinson's disease, other movement disorders, and other nervous and mental conditions. The procedure will provide the basis to obtain objective quantitative measurements of participants in clinical trials of new agents.

4.
MethodsX ; 6: 169-189, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30733930

RESUMEN

The assessment of Parkinson's disease currently relies on the history of the present illness, the clinical interview, the physical examination, and structured instruments. Drawbacks to the use of clinical ratings include the reliance on real-time human vision to quantify small differences in motion and significant inter-rater variability due to inherent subjectivity in scoring the procedures. Rating tools are semi-quantitative by design, however, in addition to significant inter-rater variability, there is inherent subjectivity in administering these tools, which are not blinded in clinical settings. Sophisticated systems to quantify movements are too costly to be used by some providers with limited resources. A simple procedure is described to obtain continuous quantitative measurements of movements of people with Parkinson's disease for objective analysis and correlation with visual observation of the movements. •Inexpensive accelerometers are attached to the upper and lower extremities of patients with Parkinson's disease and related conditions to generate a continuous, three-dimensional recorded representation of movements occurring while performing tasks to characterize the deficits of Parkinson's disease.•Movements of the procedure are rated by trained examiners live in real-time and later by videotapes.•The output of the instrumentation can be conveyed to experts for interpretation for diagnostic and therapeutic purposes.

5.
J Orthop Res ; 34(10): 1808-1819, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26748564

RESUMEN

To investigate the effects of a clinical lytic defect on the structural response of human thoracolumbar functional spinal unit. A novel CT-compatible mechanical test system was used to image the deformation of a T12-L1 motion segment and measure the change in strain response under compressive loads ranging from 50 to 750 N. A lytic lesion (LM) with cortex involvement (33% by volume) was introduced to the upper vertebral body and the CT experiments were repeated. Finite element models, established from the CT volumes, were used to investigate the defect's effects on the structural response and the state of principal and shear stresses within the affected and adjacent vertebrae. The lytic lesion resulted in severe loss of the vertebral structural competence, resulting in significant, non-linear, and asymmetric increase in the experimentally measured strains and computed stresses within both vertebrae (p < 0.01). At the cortex, the tensile strains were significantly increased, while compressive strains significantly decreased, (p < 0.05). Both the vertebral bone and cortex regions adjacent to the defect showed significant increase in computed compressive, tensile, and shear stresses (p < 0.01). Changes in stress and strain distribution within the affected and adjacent vertebral bone and the experimentally observed bulging and buckling of the vertebral cortices suggested that initiation of catastrophic vertebral failure may occur under load magnitudes encountered in daily living. Although the effect of LM on the global deformation of the spine was well-predicted, our results show that FE predictions of local strain changes must be carefully assessed for clinical relevance. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1808-1819, 2016.


Asunto(s)
Análisis de Elementos Finitos , Vértebras Lumbares/fisiopatología , Osteólisis/fisiopatología , Neoplasias de la Columna Vertebral/fisiopatología , Vértebras Torácicas/fisiopatología , Anciano , Fuerza Compresiva , Humanos , Osteólisis/etiología , Neoplasias de la Columna Vertebral/complicaciones , Soporte de Peso
6.
J Arthroplasty ; 20(7): 932-8, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16230248

RESUMEN

Fluid pressure may stimulate osteolysis near screw holes in joint arthroplasty components. We developed a generalized in vitro model of a polyethylene liner and metal backing with a screw hole to investigate whether implant design factors influence local fluid pressure. We observed an order of magnitude of variation in the peak screw hole pressure (from 16.0 and 163 kPa) under clinically relevant loading conditions. Of the implant factors investigated, the surface finish of the metallic base plate had the greatest effect on peak screw hole fluid pressures; the thickness of the polyethylene liner, as well as the gap between the liner and the base plate, were also significant design variables. Our data suggest that unpolished metal base plates, thick polyethylene liners, and tight conformity between the liner and the metal base plate will all contribute to significantly reduced peak screw hole fluid pressures in joint arthroplasty.


Asunto(s)
Prótesis Articulares , Diseño de Prótesis , Tornillos Óseos , Osteólisis/etiología , Presión , Diseño de Prótesis/efectos adversos
7.
J Spinal Disord Tech ; 18(1): 84-91, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15687858

RESUMEN

It remains unclear whether adjacent vertebral body fractures are related to the natural progression of osteoporosis or if adjacent fractures are a consequence of augmentation with bone cement. Experimental or computational studies have not completely addressed the biomechanical effects of kyphoplasty on adjacent levels immediately following augmentation. This study presents a validated two-functional spinal unit (FSU) T12-L2 finite element model with a simulated kyphoplasty augmentation in L1 to predict stresses and strains within the bone cement and bone of the treated and adjacent nontreated vertebral bodies. The findings from this multiple-FSU study and a recent retrospective clinical study suggest that changes in stresses and strains in levels adjacent to a kyphoplasty-treated level are minimal. Furthermore, the stress and strain levels found in the treated levels are less than injury tolerance limits of cancellous and cortical bone. Therefore, subsequent adjacent level fractures may be related to the underlying etiology (weakening of the bone) rather than the surgical intervention.


Asunto(s)
Cementos para Huesos , Cementación , Vértebras Lumbares/fisiología , Modelos Anatómicos , Vértebras Torácicas/fisiología , Fenómenos Biomecánicos , Cementos para Huesos/normas , Cementación/métodos , Cementación/normas , Disco Intervertebral/anatomía & histología , Disco Intervertebral/cirugía , Cifosis/patología , Cifosis/cirugía , Vértebras Lumbares/anatomía & histología , Vértebras Lumbares/cirugía , Estudios Retrospectivos , Estrés Mecánico , Vértebras Torácicas/anatomía & histología , Vértebras Torácicas/cirugía
8.
J Biomech ; 37(8): 1215-21, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15212927

RESUMEN

The local material stiffness of tissues is a well-known indicator of pathology, with locally stiffer tissue related to the possible presence of an abnormal growth in otherwise compliant tissue. Elastography is a non-invasive technique for measuring displacement distributions in loaded tissues within a medical imaging context. From these measured displacement fields, estimated for local strain have been made using well-studied techniques, but the calculation of elastic modulus has been difficult. In this study we show a method for estimating local tissue elastic modulus that gives numerically stable and robust results in test cases, and that is numerically efficient. The method assumes the tissue is isotropic and it requires an independent estimate of tissue Poisson's ratio, but the method reaches a stable result when the estimated Poisson's ratio is in error, and the resulting estimates are not very sensitive to the assumed value.


Asunto(s)
Fenómenos Biomecánicos/métodos , Elasticidad , Modelos Biológicos , Algoritmos , Fenómenos Biomecánicos/estadística & datos numéricos , Diagnóstico por Imagen , Distribución de Poisson , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...