Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 35
1.
Toxicol Appl Pharmacol ; 487: 116956, 2024 Jun.
Article En | MEDLINE | ID: mdl-38735589

Single, high doses of TCDD in rats are known to cause wasting, a progressive loss of 30 to 50% body weight and death within several weeks. To identify pathway perturbations at or near doses causing wasting, we examined differentially gene expression (DGE) and pathway enrichment in centrilobular (CL) and periportal (PP) regions of female rat livers following 6 dose levels of TCDD - 0, 3, 22, 100, 300, and 1000 ng/kg/day, 5 days/week for 4 weeks. At the higher doses, rats lost weight, had increased liver/body weight ratios and nearly complete cessation of liver cell proliferation, signs consistent with wasting. DGE curves were left shifted for the CL versus the PP regions. Canonical Phase I and Phase II genes were maximally increased at lower doses and remained elevated at all doses. At lower doses, ≤ 22 ng/kg/day in the CL and ≤ 100 ng/kg/day, upregulated genes showed transcription factor (TF) enrichment for AHR and ARNT. At the mid- and high-dose doses, there was a large number of downregulated genes and pathway enrichment for DEGs which showed downregulation of many cellular metabolism processes including those for steroids, fatty acid metabolism, pyruvate metabolism and citric acid cycle. There was significant TF enrichment of the hi-dose downregulated genes for RXR, ESR1, LXR, PPARalpha. At the highest dose, there was also pathway enrichment with upregulated genes for extracellular matrix organization, collagen formation, hemostasis and innate immune system. TCDD demonstrates most of its effects through binding the aryl hydrocarbon receptor (AHR) while the downregulation of metabolism genes at higher TCDD doses is known to be independent of AHR binding to DREs. Based on our results with DEG, we provide a hypothesis for wasting in which high doses of TCDD shift circadian processes away from the resting state, leading to greatly reduced synthesis of steroids and complex lipids needed for cell growth, and producing gene expression signals consistent with an epithelial-to-mesenchymal transition in hepatocytes.


Aryl Hydrocarbon Receptor Nuclear Translocator , Liver , Polychlorinated Dibenzodioxins , Receptors, Aryl Hydrocarbon , Animals , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Female , Liver/drug effects , Liver/metabolism , Liver/pathology , Polychlorinated Dibenzodioxins/toxicity , Rats , Aryl Hydrocarbon Receptor Nuclear Translocator/genetics , Aryl Hydrocarbon Receptor Nuclear Translocator/metabolism , Circadian Rhythm/drug effects , Circadian Rhythm/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Chemical and Drug Induced Liver Injury/genetics , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Transcriptome/drug effects , Gene Expression Profiling/methods , Rats, Sprague-Dawley , Dose-Response Relationship, Drug
2.
Toxics ; 12(4)2024 Apr 05.
Article En | MEDLINE | ID: mdl-38668494

Per- and polyfluoroalkyl substances (PFAS) are widely used, and their fluorinated state contributes to unique uses and stability but also long half-lives in the environment and humans. PFAS have been shown to be toxic, leading to immunosuppression, cancer, and other adverse health outcomes. Only a small fraction of the PFAS in commerce have been evaluated for toxicity using in vivo tests, which leads to a need to prioritize which compounds to examine further. Here, we demonstrate a prioritization approach that combines human biomonitoring data (blood concentrations) with bioactivity data (concentrations at which bioactivity is observed in vitro) for 31 PFAS. The in vitro data are taken from a battery of cell-based assays, mostly run on human cells. The result is a Bioactive Concentration to Blood Concentration Ratio (BCBCR), similar to a margin of exposure (MoE). Chemicals with low BCBCR values could then be prioritized for further risk assessment. Using this method, two of the PFAS, PFOA (Perfluorooctanoic Acid) and PFOS (Perfluorooctane Sulfonic Acid), have BCBCR values < 1 for some populations. An additional 9 PFAS have BCBCR values < 100 for some populations. This study shows a promising approach to screening level risk assessments of compounds such as PFAS that are long-lived in humans and other species.

3.
Toxicology ; 501: 153694, 2024 01.
Article En | MEDLINE | ID: mdl-38043774

Multiple new approach methods (NAMs) are being developed to rapidly screen large numbers of chemicals to aid in hazard evaluation and risk assessments. High-throughput transcriptomics (HTTr) in human cell lines has been proposed as a first-tier screening approach for determining the types of bioactivity a chemical can cause (activation of specific targets vs. generalized cell stress) and for calculating transcriptional points of departure (tPODs) based on changes in gene expression. In the present study, we examine a range of computational methods to calculate tPODs from HTTr data, using six data sets in which MCF7 cells cultured in two different media formulations were treated with a panel of 44 chemicals for 3 different exposure durations (6, 12, 24 hr). The tPOD calculation methods use data at the level of individual genes and gene set signatures, and compare data processed using the ToxCast Pipeline 2 (tcplfit2), BMDExpress and PLIER (Pathway Level Information ExtractoR). Methods were evaluated by comparing to in vitro PODs from a validated set of high-throughput screening (HTS) assays for a set of estrogenic compounds. Key findings include: (1) for a given chemical and set of experimental conditions, tPODs calculated by different methods can vary by several orders of magnitude; (2) tPODs are at least as sensitive to computational methods as to experimental conditions; (3) in comparison to an external reference set of PODs, some methods give generally higher values, principally PLIER and BMDExpress; and (4) the tPODs from HTTr in this one cell type are mostly higher than the overall PODs from a broad battery of targeted in vitro ToxCast assays, reflecting the need to test chemicals in multiple cell types and readout technologies for in vitro hazard screening.


Gene Expression Profiling , Transcriptome , Humans , High-Throughput Screening Assays/methods , Estrogens , Cell Line , Risk Assessment/methods
4.
Toxicol Appl Pharmacol ; 468: 116513, 2023 06 01.
Article En | MEDLINE | ID: mdl-37044265

'Cell Painting' is an imaging-based high-throughput phenotypic profiling (HTPP) method in which cultured cells are fluorescently labeled to visualize subcellular structures (i.e., nucleus, nucleoli, endoplasmic reticulum, cytoskeleton, Golgi apparatus / plasma membrane and mitochondria) and to quantify morphological changes in response to chemicals or other perturbagens. HTPP is a high-throughput and cost-effective bioactivity screening method that detects effects associated with many different molecular mechanisms in an untargeted manner, enabling rapid in vitro hazard assessment for thousands of chemicals. Here, 1201 chemicals from the ToxCast library were screened in concentration-response up to ∼100 µM in human U-2 OS cells using HTPP. A phenotype altering concentration (PAC) was estimated for chemicals active in the tested range. PACs tended to be higher than lower bound potency values estimated from a broad collection of targeted high-throughput assays, but lower than the threshold for cytotoxicity. In vitro to in vivo extrapolation (IVIVE) was used to estimate administered equivalent doses (AEDs) based on PACs for comparison to human exposure predictions. AEDs for 18/412 chemicals overlapped with predicted human exposures. Phenotypic profile information was also leveraged to identify putative mechanisms of action and group chemicals. Of 58 known nuclear receptor modulators, only glucocorticoids and retinoids produced characteristic profiles; and both receptor types are expressed in U-2 OS cells. Thirteen chemicals with profile similarity to glucocorticoids were tested in a secondary screen and one chemical, pyrene, was confirmed by an orthogonal gene expression assay as a novel putative GR modulating chemical. Most active chemicals demonstrated profiles not associated with a known mechanism-of-action. However, many structurally related chemicals produced similar profiles, with exceptions such as diniconazole, whose profile differed from other active conazoles. Overall, the present study demonstrates how HTPP can be applied in screening-level chemical assessments through a series of examples and brief case studies.


Biological Assay , High-Throughput Screening Assays , Humans , Risk Assessment/methods , High-Throughput Screening Assays/methods , Cells, Cultured , Biological Assay/methods
5.
Neurotoxicol Teratol ; 93: 107117, 2022.
Article En | MEDLINE | ID: mdl-35908584

To date, approximately 200 chemicals have been tested in US Environmental Protection Agency (EPA) or Organization for Economic Co-operation and Development (OECD) developmental neurotoxicity (DNT) guideline studies, leaving thousands of chemicals without traditional animal information on DNT hazard potential. To address this data gap, a battery of in vitro DNT new approach methodologies (NAMs) has been proposed. Evaluation of the performance of this battery will increase the confidence in its use to determine DNT chemical hazards. One approach to evaluate DNT NAM performance is to use a set of chemicals to evaluate sensitivity and specificity. Since a list of chemicals with potential evidence of in vivo DNT has been established, this study aims to develop a curated list of "negative" chemicals for inclusion in a "DNT NAM evaluation set". A workflow, including a literature search followed by an expert-driven literature review, was used to systematically screen 39 chemicals for lack of DNT effect. Expert panel members evaluated the scientific robustness of relevant studies to inform chemical categorizations. Following review, the panel discussed each chemical and made categorical determinations of "Favorable", "Not Favorable", or "Indeterminate" reflecting acceptance, lack of suitability, or uncertainty given specific limitations and considerations, respectively. The panel determined that 10, 22, and 7 chemicals met the criteria for "Favorable", "Not Favorable", and "Indeterminate", for use as negatives in a DNT NAM evaluation set. Ultimately, this approach not only supports DNT NAM performance evaluation but also highlights challenges in identifying large numbers of negative DNT chemicals.


Neurotoxicity Syndromes , Toxicity Tests , Animals , Neurotoxicity Syndromes/etiology , Research Design , Toxicity Tests/methods , United States , United States Environmental Protection Agency
6.
Toxicol Appl Pharmacol ; 444: 116032, 2022 06 01.
Article En | MEDLINE | ID: mdl-35483669

The United States Environmental Protection Agency has proposed a tiered testing strategy for chemical hazard evaluation based on new approach methods (NAMs). The first tier includes in vitro profiling assays applicable to many (human) cell types, such as high-throughput transcriptomics (HTTr) and high-throughput phenotypic profiling (HTPP). The goals of this study were to: (1) harmonize the seeding density of U-2 OS human osteosarcoma cells for use in both assays; (2) compare HTTr- versus HTPP-derived potency estimates for 11 mechanistically diverse chemicals; (3) identify candidate reference chemicals for monitoring assay performance in future screens; and (4) characterize the transcriptional and phenotypic changes in detail for all-trans retinoic acid (ATRA) as a model compound known for its adverse effects on osteoblast differentiation. The results of this evaluation showed that (1) HTPP conducted at low (400 cells/well) and high (3000 cells/well) seeding densities yielded comparable potency estimates and similar phenotypic profiles for the tested chemicals; (2) HTPP and HTTr resulted in comparable potency estimates for changes in cellular morphology and gene expression, respectively; (3) three test chemicals (etoposide, ATRA, dexamethasone) produced concentration-dependent effects on cellular morphology and gene expression that were consistent with known modes-of-action, demonstrating their suitability for use as reference chemicals for monitoring assay performance; and (4) ATRA produced phenotypic changes that were highly similar to other retinoic acid receptor activators (AM580, arotinoid acid) and some retinoid X receptor activators (bexarotene, methoprene acid). This phenotype was observed concurrently with autoregulation of the RARB gene. Both effects were prevented by pre-treating U-2 OS cells with pharmacological antagonists of their respective receptors. Thus, the observed phenotype could be considered characteristic of retinoic acid pathway activation in U-2 OS cells. These findings lay the groundwork for combinatorial screening of chemicals using HTTr and HTPP to generate complementary information for the first tier of a NAM-based chemical hazard evaluation strategy.


Bone Neoplasms , Tretinoin , Humans , Phenotype , RNA-Seq , Receptors, Retinoic Acid/genetics , Tretinoin/pharmacology , United States
7.
Toxicol Sci ; 188(1): 88-107, 2022 06 28.
Article En | MEDLINE | ID: mdl-35426944

Inhalation is the most relevant route of volatile organic chemical (VOC) exposure; however, due to unique challenges posed by their chemical properties and poor solubility in aqueous solutions, in vitro chemical safety testing is predominantly performed using direct application dosing/submerged exposures. To address the difficulties in screening toxic effects of VOCs, our cell culture exposure system permits cells to be exposed to multiple concentrations at air-liquid interface (ALI) in a 24-well format. ALI exposure methods permit direct chemical-to-cell interaction with the test article at physiological conditions. In the present study, BEAS-2B and primary normal human bronchial epithelial cells (pHBEC) are used to assess gene expression, cytotoxicity, and cell viability responses to a variety of volatile chemicals including acrolein, formaldehyde, 1,3-butadiene, acetaldehyde, 1-bromopropane, carbon tetrachloride, dichloromethane, and trichloroethylene. BEAS-2B cells were exposed to all the test agents, whereas pHBECs were only exposed to the latter 4 listed above. The VOC concentrations tested elicited only slight cell viability changes in both cell types. Gene expression changes were analyzed using benchmark dose (BMD) modeling. The BMD for the most sensitive gene set was within one order of magnitude of the threshold-limit value reported by the American Conference of Governmental Industrial Hygienists, and the most sensitive gene sets impacted by exposure correlate to known adverse health effects recorded in epidemiologic and in vivo exposure studies. Overall, our study outlines a novel in vitro approach for evaluating molecular-based points-of-departure in human airway epithelial cell exposure to volatile chemicals.


Air Pollutants , Volatile Organic Compounds , Acetaldehyde , Benchmarking , Formaldehyde , Humans , Volatile Organic Compounds/analysis
8.
Toxicol Sci ; 187(1): 62-79, 2022 04 26.
Article En | MEDLINE | ID: mdl-35172012

In vivo developmental neurotoxicity (DNT) testing is resource intensive and lacks information on cellular processes affected by chemicals. To address this, DNT new approach methodologies (NAMs) are being evaluated, including: the microelectrode array neuronal network formation assay; and high-content imaging to evaluate proliferation, apoptosis, neurite outgrowth, and synaptogenesis. This work addresses 3 hypotheses: (1) a broad screening battery provides a sensitive marker of DNT bioactivity; (2) selective bioactivity (occurring at noncytotoxic concentrations) may indicate functional processes disrupted; and, (3) a subset of endpoints may optimally classify chemicals with in vivo evidence for DNT. The dataset was comprised of 92 chemicals screened in all 57 assay endpoints sourced from publicly available data, including a set of DNT NAM evaluation chemicals with putative positives (53) and negatives (13). The DNT NAM battery provides a sensitive marker of DNT bioactivity, particularly in cytotoxicity and network connectivity parameters. Hierarchical clustering suggested potency (including cytotoxicity) was important for classifying positive chemicals with high sensitivity (93%) but failed to distinguish patterns of disrupted functional processes. In contrast, clustering of selective values revealed informative patterns of differential activity but demonstrated lower sensitivity (74%). The false negatives were associated with several limitations, such as the maximal concentration tested or gaps in the biology captured by the current battery. This work demonstrates that this multi-dimensional assay suite provides a sensitive biomarker for DNT bioactivity, with selective activity providing possible insight into specific functional processes affected by chemical exposure and a basis for further research.


Neurotoxicity Syndromes , Toxicity Tests , Humans , Neurogenesis , Neuronal Outgrowth , Neurons , Neurotoxicity Syndromes/etiology , Toxicity Tests/methods
9.
Regul Toxicol Pharmacol ; 125: 105020, 2021 Oct.
Article En | MEDLINE | ID: mdl-34333066

Omics methodologies are widely used in toxicological research to understand modes and mechanisms of toxicity. Increasingly, these methodologies are being applied to questions of regulatory interest such as molecular point-of-departure derivation and chemical grouping/read-across. Despite its value, widespread regulatory acceptance of omics data has not yet occurred. Barriers to the routine application of omics data in regulatory decision making have been: 1) lack of transparency for data processing methods used to convert raw data into an interpretable list of observations; and 2) lack of standardization in reporting to ensure that omics data, associated metadata and the methodologies used to generate results are available for review by stakeholders, including regulators. Thus, in 2017, the Organisation for Economic Co-operation and Development (OECD) Extended Advisory Group on Molecular Screening and Toxicogenomics (EAGMST) launched a project to develop guidance for the reporting of omics data aimed at fostering further regulatory use. Here, we report on the ongoing development of the first formal reporting framework describing the processing and analysis of both transcriptomic and metabolomic data for regulatory toxicology. We introduce the modular structure, content, harmonization and strategy for trialling this reporting framework prior to its publication by the OECD.


Metabolomics/standards , Organisation for Economic Co-Operation and Development/standards , Toxicogenetics/standards , Toxicology/standards , Transcriptome/physiology , Documentation/standards , Humans
10.
Toxicol Sci ; 181(1): 68-89, 2021 04 27.
Article En | MEDLINE | ID: mdl-33538836

New approach methodologies (NAMs) that efficiently provide information about chemical hazard without using whole animals are needed to accelerate the pace of chemical risk assessments. Technological advancements in gene expression assays have made in vitro high-throughput transcriptomics (HTTr) a feasible option for NAMs-based hazard characterization of environmental chemicals. In this study, we evaluated the Templated Oligo with Sequencing Readout (TempO-Seq) assay for HTTr concentration-response screening of a small set of chemicals in the human-derived MCF7 cell model. Our experimental design included a variety of reference samples and reference chemical treatments in order to objectively evaluate TempO-Seq assay performance. To facilitate analysis of these data, we developed a robust and scalable bioinformatics pipeline using open-source tools. We also developed a novel gene expression signature-based concentration-response modeling approach and compared the results to a previously implemented workflow for concentration-response analysis of transcriptomics data using BMDExpress. Analysis of reference samples and reference chemical treatments demonstrated highly reproducible differential gene expression signatures. In addition, we found that aggregating signals from individual genes into gene signatures prior to concentration-response modeling yielded in vitro transcriptional biological pathway altering concentrations (BPACs) that were closely aligned with previous ToxCast high-throughput screening assays. Often these identified signatures were associated with the known molecular target of the chemicals in our test set as the most sensitive components of the overall transcriptional response. This work has resulted in a novel and scalable in vitro HTTr workflow that is suitable for high-throughput hazard evaluation of environmental chemicals.


High-Throughput Screening Assays , Transcriptome , Animals , Biological Assay , Computational Biology , Humans , Risk Assessment
11.
SLAS Discov ; 26(2): 292-308, 2021 02.
Article En | MEDLINE | ID: mdl-32862757

Phenotypic profiling assays are untargeted screening assays that measure a large number (hundreds to thousands) of cellular features in response to a stimulus and often yield diverse and unanticipated profiles of phenotypic effects, leading to challenges in distinguishing active from inactive treatments. Here, we compare a variety of different strategies for hit identification in imaging-based phenotypic profiling assays using a previously published Cell Painting data set. Hit identification strategies based on multiconcentration analysis involve curve fitting at several levels of data aggregation (e.g., individual feature level, aggregation of similarly derived features into categories, and global modeling of all features) and on computed metrics (e.g., Euclidean and Mahalanobis distance metrics and eigenfeatures). Hit identification strategies based on single-concentration analysis included measurement of signal strength (e.g., total effect magnitude) and correlation of profiles among biological replicates. Modeling parameters for each approach were optimized to retain the ability to detect a reference chemical with subtle phenotypic effects while limiting the false-positive rate to 10%. The percentage of test chemicals identified as hits was highest for feature-level and category-based approaches, followed by global fitting, whereas signal strength and profile correlation approaches detected the fewest number of active hits at the fixed false-positive rate. Approaches involving fitting of distance metrics had the lowest likelihood for identifying high-potency false-positive hits that may be associated with assay noise. Most of the methods achieved a 100% hit rate for the reference chemical and high concordance for 82% of test chemicals, indicating that hit calls are robust across different analysis approaches.


Drug Discovery/methods , High-Throughput Screening Assays/methods , Algorithms , Biological Assay/methods , Cell Culture Techniques , Cluster Analysis , Drug Discovery/standards , High-Throughput Screening Assays/standards , Humans , Models, Theoretical , Reproducibility of Results , Workflow
12.
Front Toxicol ; 3: 803987, 2021.
Article En | MEDLINE | ID: mdl-35295155

Studies in in vivo rodent models have been the accepted approach by regulatory agencies to evaluate potential developmental neurotoxicity (DNT) of chemicals for decades. These studies, however, are inefficient and cannot meet the demand for the thousands of chemicals that need to be assessed for DNT hazard. As such, several in vitro new approach methods (NAMs) have been developed to circumvent limitations of these traditional studies. The DNT NAMs, some of which utilize human-derived cell models, are intended to be employed in a testing battery approach, each focused on a specific neurodevelopmental process. The need for multiple assays, however, to evaluate each process can prolong testing and prioritization of chemicals for more in depth assessments. Therefore, a multi-endpoint higher-throughput approach to assess DNT hazard potential would be of value. Accordingly, we have adapted a high-throughput phenotypic profiling (HTPP) approach for use with human-derived neural progenitor (hNP1) cells. HTPP is a fluorescence-based assay that quantitatively measures alterations in cellular morphology. This approach, however, required optimization of several laboratory procedures prior to chemical screening. First, we had to determine an appropriate cell plating density in 384-well plates. We then had to identify the minimum laminin concentration required for optimal cell growth and attachment. And finally, we had to evaluate whether addition of antibiotics to the culture medium would alter cellular morphology. We selected 6,000 cells/well as an appropriate plating density, 20 µg/ml laminin for optimal cell growth and attachment, and antibiotic addition in the culture medium. After optimizing hNP1 cell culture conditions for HTPP, it was then necessary to select appropriate in-plate assay controls from a reference chemical set. These reference chemicals were previously demonstrated to elicit unique phenotypic profiles in various other cell types. Aphidicolin, bafilomycin A1, berberine chloride, and cucurbitacin I induced robust phenotypic profiles as compared to dimethyl sulfoxide vehicle control in the hNP1 cells, and thus can be employed as in-plate assay controls for subsequent chemical screens. We have optimized HTPP for hNP1 cells, and consequently this approach can now be assessed as a potential NAM for DNT hazard evaluation and results compared to previously developed DNT assays.

13.
Toxicol Appl Pharmacol ; 389: 114876, 2020 01 15.
Article En | MEDLINE | ID: mdl-31899216

The present study adapted an existing high content imaging-based high-throughput phenotypic profiling (HTPP) assay known as "Cell Painting" for bioactivity screening of environmental chemicals. This assay uses a combination of fluorescent probes to label a variety of organelles and measures a large number of phenotypic features at the single cell level in order to detect chemical-induced changes in cell morphology. First, a small set of candidate phenotypic reference chemicals (n = 14) known to produce changes in the cellular morphology of U-2 OS cells were identified and screened at multiple time points in concentration-response format. Many of these chemicals produced distinct cellular phenotypes that were qualitatively similar to those previously described in the literature. A novel workflow for phenotypic feature extraction, concentration-response modeling and determination of in vitro thresholds for chemical bioactivity was developed. Subsequently, a set of 462 chemicals from the ToxCast library were screened in concentration-response mode. Bioactivity thresholds were calculated and converted to administered equivalent doses (AEDs) using reverse dosimetry. AEDs were then compared to effect values from mammalian toxicity studies. In many instances (68%), the HTPP-derived AEDs were either more conservative than or comparable to the in vivo effect values. Overall, we conclude that the HTPP assay can be used as an efficient, cost-effective and reproducible screening method for characterizing the biological activity and potency of environmental chemicals for potential use in in vitro-based safety assessments.


Biological Assay/methods , Environmental Pollutants/chemistry , Environmental Pollutants/toxicity , High-Throughput Screening Assays/methods , Toxicity Tests/methods , Animals , Cell Line, Tumor , Humans , Risk Assessment/methods
14.
Toxicol In Vitro ; 62: 104692, 2020 Feb.
Article En | MEDLINE | ID: mdl-31669395

There is a growing recognition that application of mechanistic approaches to understand cross-species shared molecular targets and pathway conservation in the context of hazard characterization, provide significant opportunities in risk assessment (RA) for both human health and environmental safety. Specifically, it has been recognized that a more comprehensive and reliable understanding of similarities and differences in biological pathways across a variety of species will better enable cross-species extrapolation of potential adverse toxicological effects. Ultimately, this would also advance the generation and use of mechanistic data for both human health and environmental RA. A workshop brought together representatives from industry, academia and government to discuss how to improve the use of existing data, and to generate new NAMs data to derive better mechanistic understanding between humans and environmentally-relevant species, ultimately resulting in holistic chemical safety decisions. Thanks to a thorough dialogue among all participants, key challenges, current gaps and research needs were identified, and potential solutions proposed. This discussion highlighted the common objective to progress toward more predictive, mechanistically based, data-driven and animal-free chemical safety assessments. Overall, the participants recognized that there is no single approach which would provide all the answers for bridging the gap between mechanism-based human health and environmental RA, but acknowledged we now have the incentive, tools and data availability to address this concept, maximizing the potential for improvements in both human health and environmental RA.


Environment , Environmental Health , Toxicology/trends , Animals , Chemical Safety , Humans , Risk Assessment/methods , Species Specificity
15.
Toxicol Sci ; 169(2): 317-332, 2019 06 01.
Article En | MEDLINE | ID: mdl-30835285

The U.S. Environmental Protection Agency (EPA) is faced with the challenge of efficiently and credibly evaluating chemical safety often with limited or no available toxicity data. The expanding number of chemicals found in commerce and the environment, coupled with time and resource requirements for traditional toxicity testing and exposure characterization, continue to underscore the need for new approaches. In 2005, EPA charted a new course to address this challenge by embracing computational toxicology (CompTox) and investing in the technologies and capabilities to push the field forward. The return on this investment has been demonstrated through results and applications across a range of human and environmental health problems, as well as initial application to regulatory decision-making within programs such as the EPA's Endocrine Disruptor Screening Program. The CompTox initiative at EPA is more than a decade old. This manuscript presents a blueprint to guide the strategic and operational direction over the next 5 years. The primary goal is to obtain broader acceptance of the CompTox approaches for application to higher tier regulatory decisions, such as chemical assessments. To achieve this goal, the blueprint expands and refines the use of high-throughput and computational modeling approaches to transform the components in chemical risk assessment, while systematically addressing key challenges that have hindered progress. In addition, the blueprint outlines additional investments in cross-cutting efforts to characterize uncertainty and variability, develop software and information technology tools, provide outreach and training, and establish scientific confidence for application to different public health and environmental regulatory decisions.


Computational Biology/methods , High-Throughput Screening Assays/methods , Toxicology/methods , Decision Making , Humans , Information Technology , Risk Assessment , Toxicokinetics , United States , United States Environmental Protection Agency
16.
Toxicol Appl Pharmacol ; 354: 24-39, 2018 09 01.
Article En | MEDLINE | ID: mdl-29626487

Medium- to high-throughput in vitro assays that recapitulate the critical processes of nervous system development have been proposed as a means to facilitate rapid testing and identification of chemicals which may affect brain development. In vivo neurodevelopment is a complex progression of distinct cellular processes. Therefore, batteries of in vitro assays that model and quantify effects on a variety of neurodevelopmental processes have the potential to identify chemicals which may affect brain development at different developmental stages. In the present study, the results of concentration-response screening of 67 reference chemicals in a battery of high content imaging and microplate reader-based assays that evaluate neural progenitor cell proliferation, neural proginitor cell apoptosis, neurite initiation/outgrowth, neurite maturation and synaptogenesis are summarized and compared. The assay battery had a high degree of combined sensitivity (87%) for categorizing chemicals known to affect neurodevelopment as active and a moderate degree of combined specificity (71%) for categorizing chemicals not associated with affects on neurodevelopment as inactive. The combined sensitivity of the assay battery was higher compared to any individual assay while the combined specificity of the assay battery was lower compared to any individual assay. When selectivity of effects for a neurodevelopmental endpoint as compared to general cytotoxicity was taken into account, the combined sensitivity of the assay battery decreased (68%) while the combined specificity increased (93%). The identity and potency of chemicals identified as active varied across the assay battery, underscoring the need for use of a combination of diverse in vitro models to comprehensively screen chemicals and identify those which potentially affect neurodevelopment. Overall, these data indicate that a battery of assays which address many different processes in nervous system development may be used to identify potential developmental neurotoxicants and to distinguish specific from generalized cytotoxic effects with a high degree of success.


Neocortex/drug effects , Neurogenesis/drug effects , Neurons/drug effects , Neurotoxicity Syndromes/etiology , Toxicity Tests , Age Factors , Animals , Apoptosis/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Endpoint Determination , High-Throughput Screening Assays , Humans , Neocortex/growth & development , Neocortex/pathology , Neural Stem Cells/drug effects , Neural Stem Cells/pathology , Neuronal Outgrowth/drug effects , Neurons/pathology , Neurotoxicity Syndromes/pathology , Neurotoxicity Syndromes/physiopathology , Rats , Rats, Long-Evans , Reproducibility of Results , Risk Assessment
17.
Methods Mol Biol ; 1683: 305-338, 2018.
Article En | MEDLINE | ID: mdl-29082500

Due to advances in the fields of stem cell biology and cellular engineering, a variety of commercially available human-derived neurons and neural progenitor cells (NPCs) are now available for use in research applications, including small molecule efficacy or toxicity screening. The use of human-derived neural cells is anticipated to address some of the uncertainties associated with the use of nonhuman culture models or transformed cell lines derived from human tissues. Many of the human-derived neurons and NPCs currently available from commercial sources recapitulate critical process of nervous system development including NPC proliferation, neurite outgrowth, synaptogenesis, and calcium signaling, each of which can be evaluated using high content image analysis (HCA). Human-derived neurons and NPCs are also amenable to culture in multiwell plate formats and thus may be adapted for use in HCA-based screening applications. This article reviews various types of HCA-based assays that have been used in conjunction with human-derived neurons and NPC cultures. This article also highlights instances where lower throughput analysis of neurodevelopmental processes has been performed and which demonstrate a potential for adaptation to higher-throughout imaging methods. Finally, a generic protocol for evaluating neurite outgrowth in human-derived neurons using a combination of immunocytochemistry and HCA is presented. The information provided in this article is intended to serve as a resource for cell model and assay selection for those interested in evaluating neurodevelopmental processes in human-derived cells.


High-Throughput Screening Assays , Molecular Imaging , Neural Stem Cells/metabolism , Neurons/metabolism , Apoptosis , Biomarkers , Calcium/metabolism , Cell Culture Techniques , Cell Differentiation , Cell Line , Cell Movement , Cell Proliferation , Cell Survival , Humans , Image Processing, Computer-Assisted , Immunohistochemistry , Molecular Imaging/methods , Neural Stem Cells/cytology , Neurites/metabolism , Neurogenesis , Neurons/cytology , Signal Transduction
18.
Toxicology ; 368-369: 172-182, 2016 Aug 10.
Article En | MEDLINE | ID: mdl-27590929

The aryl hydrocarbon receptor (AHR) has been extensively characterized for the essential role it plays in mediating the toxic responses elicited by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Despite similarities across animal species, species-specific differences exist in the profile of toxicity and sensitivity to TCDD owing, in part, to differences in the AHR. Newer reports have implicated the importance of AHR in the development and regulation of the immune system. Our present studies seek to further explore the essential role of AHR in lymphoid tissue composition, B cell function and the immunological responses after TCDD administration using the recently established AHR KO rats. Comprehensive immune cell phenotyping showed a decrease in the CD8+ T cell, CD11c+ populations and an increase in NKT cells in 3-week-old AHR KO rats compared to the WT controls. The lipopolysaccharide-induced IgM response and proliferation was markedly suppressed in the WT but not in the AHR KO B cells in the presence of TCDD. However, the percentage of LPS-activated IgM+ B cells was significantly higher in the AHR KO B cells as compared to that of WT suggesting the role of AHR in regulating the IgM response. The use of an AHR antagonist further alluded to the endogenous role of AHR in regulating B cell responses in the rat. Overall, the studies report for the first time, comprehensive immune cell phenotyping of the AHR KO rat and the endogenous role of AHR in the regulation of B cell function in the rat.


B-Lymphocytes/drug effects , Natural Killer T-Cells/drug effects , Polychlorinated Dibenzodioxins/toxicity , Receptors, Aryl Hydrocarbon/metabolism , Animals , B-Lymphocytes/immunology , CD11c Antigen/metabolism , CD8-Positive T-Lymphocytes/metabolism , Cell Proliferation , Cells, Cultured , Dose-Response Relationship, Drug , Female , Gene Knockout Techniques , Immunoglobulin M/immunology , Immunophenotyping , Male , Natural Killer T-Cells/immunology , Rats , Species Specificity
19.
J Appl Toxicol ; 36(6): 802-14, 2016 Jun.
Article En | MEDLINE | ID: mdl-26278112

Sustained activation of the aryl hydrocarbon receptor (AHR) is believed to be the initial key event in AHR receptor-mediated tumorigenesis in the rat liver. The role of AHR in mediating pathological changes in the liver prior to tumor formation was investigated in a 4-week, repeated-dose study using adult female wild-type (WT) and AHR knockout (AHR-KO) rats treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Beginning at 8 weeks of age, AHR-KO and WT rats were dosed by oral gavage with varying concentrations of TCDD (0, 3, 22, 100, 300 and 1000 ng kg(-1) day(-1) ). Lung, liver and thymus histopathology, hematology, serum chemistry and the distribution of TCDD in liver and adipose tissue were examined. Treatment-related increases in the severity of liver and thymus pathology were observed in WT, but not AHR-KO rats. In the liver, these included hepatocellular hypertrophy, bile duct hyperplasia, multinucleated hepatocytes and inflammatory cell foci. A loss of cellularity in the thymic cortex and thymic atrophy was observed. Treatment-related changes in serum chemistry parameters were also observed in WT, but not AHR-KO rats. Finally, dose-dependent accumulation of TCDD was observed primarily in the liver of WT rats and primarily in the adipose tissue of AHR-KO rats. The results suggest that AHR activation is the initial key event underlying the progression of histological effects leading to liver tumorigenesis following TCDD treatment. Copyright © 2015 John Wiley & Sons, Ltd.


Basic Helix-Loop-Helix Transcription Factors/agonists , Carcinogenesis/drug effects , Environmental Pollutants/toxicity , Polychlorinated Dibenzodioxins/toxicity , Precancerous Conditions/chemically induced , Receptors, Aryl Hydrocarbon/agonists , Teratogens/toxicity , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Adipose Tissue/pathology , Administration, Oral , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Dose-Response Relationship, Drug , Environmental Pollutants/administration & dosage , Environmental Pollutants/metabolism , Female , Gene Knockout Techniques , Hyperplasia/chemically induced , Hyperplasia/metabolism , Hyperplasia/pathology , Hypertrophy/chemically induced , Hypertrophy/metabolism , Hypertrophy/pathology , Liver/drug effects , Liver/metabolism , Liver/pathology , Lung/drug effects , Lung/metabolism , Lung/pathology , Polychlorinated Dibenzodioxins/administration & dosage , Polychlorinated Dibenzodioxins/metabolism , Precancerous Conditions/metabolism , Precancerous Conditions/pathology , Random Allocation , Rats, Sprague-Dawley , Rats, Transgenic , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Teratogens/metabolism , Thymus Gland/drug effects , Thymus Gland/metabolism , Thymus Gland/pathology , Tissue Distribution , Toxicokinetics
20.
Mol Brain ; 8: 10, 2015 Feb 15.
Article En | MEDLINE | ID: mdl-25757474

BACKGROUND: Synaptogenesis is a critical neurodevelopmental process whereby pre- and postsynaptic neurons form apposed sites of contact specialized for chemical neurotransmission. Many neurodevelopmental disorders are thought to reflect altered patterns of synaptic connectivity, including imbalances between excitatory and inhibitory synapses. Developing rapid throughput approaches for assessing synaptogenesis will facilitate toxicologic and drug screening studies of neurodevelopmental disorders. The current study describes the use of high-content imaging to quantify the ontogeny of excitatory and inhibitory synapses using in vitro models of neurodevelopment. These data are compared to biochemical and functional measures of synaptogenesis. RESULTS: The ontogenetic patterns of synapse formation were compared between primary rodent hippocampal and cortical neurons over 28 days in vitro (DIV). As determined by ELISA, the increase in synaptophysin expression levels as cultures matured was similar between hippocampal and cortical cultures. High-content imaging of immunoreactivity of excitatory and inhibitory synaptic biomarkers demonstrated an overall greater number of synapses in hippocampal relative to cortical neurons with marked differences in the pattern of inhibitory synapse development between these two neuronal cell types. Functional assays revealed that both the mean firing rates and mean bursting rates were significantly increased in cortical cultures relative to hippocampal cultures. This difference may reflect decreased inhibitory synaptic tone in cortical versus hippocampal cultures. CONCLUSIONS: These data demonstrate differences and similarities in the ontogeny of synaptogenesis between hippocampal and cortical neurons, depending on the biological level examined. Assessment of synaptophysin protein levels by ELISA showed a general increase in synapse formation in both cell types with increasing time in culture, while high-content imaging was able to delineate cell type-dependent differences in formation of excitatory versus inhibitory synapses. The functional significance of differences in the balance of excitatory to inhibitory synapses was confirmed by the assessment of network activity using microelectrode arrays. These results suggest that high-content imaging and microelectrode arrays provide complementary approaches for quantitative assessment of synaptogenesis, which should provide a robust readout of toxicologic and pharmacologic effects on this critical neurodevelopmental event.


Cerebral Cortex/cytology , Hippocampus/cytology , Neurogenesis , Neurons/cytology , Neurons/metabolism , Synapses/metabolism , Algorithms , Animals , Cell Count , Cells, Cultured , Dendrites/metabolism , Enzyme-Linked Immunosorbent Assay , Female , Microelectrodes , Nerve Net/physiology , Neural Inhibition , Rats, Sprague-Dawley , Synaptophysin/metabolism
...